Open Access. Powered by Scholars. Published by Universities.®

Genetics and Genomics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 20 of 20

Full-Text Articles in Genetics and Genomics

Rickettsial Pathogen Perturbs Tick Circadian Gene To Infect The Vertebrate Host, Supreet Khanal, Vikas Taank, John F. Anderson, Hameeda Sultana, Girish Neelakanta Jan 2022

Rickettsial Pathogen Perturbs Tick Circadian Gene To Infect The Vertebrate Host, Supreet Khanal, Vikas Taank, John F. Anderson, Hameeda Sultana, Girish Neelakanta

Biological Sciences Faculty Publications

Ixodes scapularis is a medically important tick that transmits several microbes to humans, including rickettsial pathogen Anaplasma phagocytophilum. In nature, these ticks encounter several abiotic factors including changes in temperature, humidity, and light. Many organisms use endogenously generated circadian pathways to encounter abiotic factors. In this study, we provide evidence for the first time to show that A. phagocytophilum modulates the arthropod circadian gene for its transmission to the vertebrate host. We noted a circadian oscillation in the expression of arthropod clock, bmal1, period and timeless genes when ticks or tick cells were exposed to alternate 12 h …


Molecular Evolutionary Trends And Feeding Ecology Diversification In The Hemiptera, Anchored By The Milkweed Bug Genome, Kristen A. Panfilio, Iris M. Vargas Jentzsch, Joshua B. Benoit, Deniz Erezyilmaz, Yuichiro Suzuki, Stefano Colella, Hugh M. Robertson, Monica F. Poelchau, Robert M. Waterhouse, Panagiotis Ioannidis, Matthew T. Weirauch, Daniel S. T. Hughes, Shwetha C. Murali, John H. Werren, Chris G. C. Jacobs, Elizabeth J. Duncan, David Armisén, Barbara M. I. Vreede, Patrice Baa-Puyoulet, Chloé S. Berger, Chun-Che Chang, Hsu Chao, Mei-Ju M. Chen, Yen-Ta Chen, Christopher P. Childers, Ariel D. Chipman, Andrew G. Cridge, Antonin J. J. Crumière, Peter K. Dearden, Elise M. Didion, Subba Reddy Palli, Jayendra Nath Shukla Apr 2019

Molecular Evolutionary Trends And Feeding Ecology Diversification In The Hemiptera, Anchored By The Milkweed Bug Genome, Kristen A. Panfilio, Iris M. Vargas Jentzsch, Joshua B. Benoit, Deniz Erezyilmaz, Yuichiro Suzuki, Stefano Colella, Hugh M. Robertson, Monica F. Poelchau, Robert M. Waterhouse, Panagiotis Ioannidis, Matthew T. Weirauch, Daniel S. T. Hughes, Shwetha C. Murali, John H. Werren, Chris G. C. Jacobs, Elizabeth J. Duncan, David Armisén, Barbara M. I. Vreede, Patrice Baa-Puyoulet, Chloé S. Berger, Chun-Che Chang, Hsu Chao, Mei-Ju M. Chen, Yen-Ta Chen, Christopher P. Childers, Ariel D. Chipman, Andrew G. Cridge, Antonin J. J. Crumière, Peter K. Dearden, Elise M. Didion, Subba Reddy Palli, Jayendra Nath Shukla

Entomology Faculty Publications

Background: The Hemiptera (aphids, cicadas, and true bugs) are a key insect order, with high diversity for feeding ecology and excellent experimental tractability for molecular genetics. Building upon recent sequencing of hemipteran pests such as phloem-feeding aphids and blood-feeding bed bugs, we present the genome sequence and comparative analyses centered on the milkweed bug Oncopeltus fasciatus, a seed feeder of the family Lygaeidae.

Results: The 926-Mb Oncopeltus genome is well represented by the current assembly and official gene set. We use our genomic and RNA-seq data not only to characterize the protein-coding gene repertoire and perform isoform-specific RNAi, but …


Morphogenetic Defects Underlie Superior Coloboma, A Newly Identified Closure Disorder Of The Dorsal Eye, Jennifer C. Hocking, Jakub K. Famulski, Kevin H. Yoon, Sonya A. Widen, Cassidy S. Bernstein, Sophie Koch, Omri Weiss, Forge Canada Consortium, Canada, Seema Agarwala, Adi Inbal, Ordan J. Lehmann, Andrew J. Waskiewicz Mar 2018

Morphogenetic Defects Underlie Superior Coloboma, A Newly Identified Closure Disorder Of The Dorsal Eye, Jennifer C. Hocking, Jakub K. Famulski, Kevin H. Yoon, Sonya A. Widen, Cassidy S. Bernstein, Sophie Koch, Omri Weiss, Forge Canada Consortium, Canada, Seema Agarwala, Adi Inbal, Ordan J. Lehmann, Andrew J. Waskiewicz

Biology Faculty Publications

The eye primordium arises as a lateral outgrowth of the forebrain, with a transient fissure on the inferior side of the optic cup providing an entry point for developing blood vessels. Incomplete closure of the inferior ocular fissure results in coloboma, a disease characterized by gaps in the inferior eye and recognized as a significant cause of pediatric blindness. Here, we identify eight patients with defects in tissues of the superior eye, a congenital disorder that we term superior coloboma. The embryonic origin of superior coloboma could not be explained by conventional models of eye development, leading us to …


Highly Conserved Molecular Pathways, Including Wnt Signaling, Promote Functional Recovery From Spinal Cord Injury In Lampreys, Paige E. Herman, Angelos Papatheodorou, Stephanie A. Bryant, Courtney K. M. Waterbury, Joseph R. Herdy, Anthony A. Arcese, Joseph D. Buxbaum, Jeramiah J. Smith, Jennifer R. Morgan, Ona Bloom Jan 2018

Highly Conserved Molecular Pathways, Including Wnt Signaling, Promote Functional Recovery From Spinal Cord Injury In Lampreys, Paige E. Herman, Angelos Papatheodorou, Stephanie A. Bryant, Courtney K. M. Waterbury, Joseph R. Herdy, Anthony A. Arcese, Joseph D. Buxbaum, Jeramiah J. Smith, Jennifer R. Morgan, Ona Bloom

Biology Faculty Publications

In mammals, spinal cord injury (SCI) leads to dramatic losses in neurons and synaptic connections, and consequently function. Unlike mammals, lampreys are vertebrates that undergo spontaneous regeneration and achieve functional recovery after SCI. Therefore our goal was to determine the complete transcriptional responses that occur after SCI in lampreys and to identify deeply conserved pathways that promote regeneration. We performed RNA-Seq on lamprey spinal cord and brain throughout the course of functional recovery. We describe complex transcriptional responses in the injured spinal cord, and somewhat surprisingly, also in the brain. Transcriptional responses to SCI in lampreys included transcription factor networks …


Ion Channel Signaling Influences Cellular Proliferation And Phagocyte Activity During Axolotl Tail Regeneration, Brandon M. Franklin, S. Randal Voss, Jeffrey L. Osborn Aug 2017

Ion Channel Signaling Influences Cellular Proliferation And Phagocyte Activity During Axolotl Tail Regeneration, Brandon M. Franklin, S. Randal Voss, Jeffrey L. Osborn

Biology Faculty Publications

Little is known about the potential for ion channels to regulate cellular behaviors during tissue regeneration. Here, we utilized an amphibian tail regeneration assay coupled with a chemical genetic screen to identify ion channel antagonists that altered critical cellular processes during regeneration. Inhibition of multiple ion channels either partially (anoctamin1/Tmem16a, anoctamin2/Tmem16b, KV2.1, KV2.2, L-type CaV channels and H/K ATPases) or completely (GlyR, GABAAR, KV1.5 and SERCA pumps) inhibited tail regeneration. Partial inhibition of tail regeneration by blocking the calcium activated chloride channels, anoctamin1&2, was associated with a reduction of cellular proliferation in …


A Linkage Map For The Newt Notophthalmus Viridescens: Insights In Vertebrate Genome And Chromosome Evolution, Melissa C. Keinath, S. Randal Voss, Panagiotis A. Tsonis, Jeramiah J. Smith Jun 2017

A Linkage Map For The Newt Notophthalmus Viridescens: Insights In Vertebrate Genome And Chromosome Evolution, Melissa C. Keinath, S. Randal Voss, Panagiotis A. Tsonis, Jeramiah J. Smith

Biology Faculty Publications

Genetic linkage maps are fundamental resources that enable diverse genetic and genomic approaches, including quantitative trait locus (QTL) analyses and comparative studies of genome evolution. It is straightforward to build linkage maps for species that are amenable to laboratory culture and genetic crossing designs, and that have relatively small genomes and few chromosomes. It is more difficult to generate linkage maps for species that do not meet these criteria. Here, we introduce a method to rapidly build linkage maps for salamanders, which are known for their enormous genome sizes. As proof of principle, we developed a linkage map with thousands …


Variation In Dna Methylation Is Not Consistently Reflected By Sociality In Hymenoptera, Karl M. Glastad, Samuel V. Arsenault, Kim L. Vertacnik, Scott M. Geib, Sasha Kay, Bryan N. Danforth, Sandra M. Rehan, Catherine R. Linnen, Sarah D. Kocher, Brendan G. Hunt Jun 2017

Variation In Dna Methylation Is Not Consistently Reflected By Sociality In Hymenoptera, Karl M. Glastad, Samuel V. Arsenault, Kim L. Vertacnik, Scott M. Geib, Sasha Kay, Bryan N. Danforth, Sandra M. Rehan, Catherine R. Linnen, Sarah D. Kocher, Brendan G. Hunt

Biology Faculty Publications

Changes in gene regulation that underlie phenotypic evolution can be encoded directly in the DNA sequence or mediated by chromatin modifications such as DNA methylation. It has been hypothesized that the evolution of eusocial division of labor is associated with enhanced gene regulatory potential, which may include expansions in DNA methylation in the genomes of Hymenoptera (bees, ants, wasps, and sawflies). Recently, this hypothesis garnered support from analyses of a commonly used metric to estimate DNA methylation in silico, CpG content. Here, we test this hypothesis using direct, nucleotide-level measures of DNA methylation across nine species of Hymenoptera. In doing …


Cellular And Molecular Features Of Developmentally Programmed Genome Rearrangement In A Vertebrate (Sea Lamprey: Petromyzon Marinus), Vladimir A. Timoshevskiy, Joseph R. Herdy, Melissa C. Keinath, Jeramiah J. Smith Jun 2016

Cellular And Molecular Features Of Developmentally Programmed Genome Rearrangement In A Vertebrate (Sea Lamprey: Petromyzon Marinus), Vladimir A. Timoshevskiy, Joseph R. Herdy, Melissa C. Keinath, Jeramiah J. Smith

Biology Faculty Publications

The sea lamprey (Petromyzon marinus) represents one of the few vertebrate species known to undergo large-scale programmatic elimination of genomic DNA over the course of its normal development. Programmed genome rearrangements (PGRs) result in the reproducible loss of ~20% of the genome from somatic cell lineages during early embryogenesis. Studies of PGR hold the potential to provide novel insights related to the maintenance of genome stability during the cell cycle and coordination between mechanisms responsible for the accurate distribution of chromosomes into daughter cells, yet little is known regarding the mechanistic basis or cellular context of PGR in …


Roles Of The Drosophila Sk Channel (Dsk) In Courtship Memory, Ahmad N. Abou Tayoun, Claudio Pikielny, Patrick J. Dolph Apr 2012

Roles Of The Drosophila Sk Channel (Dsk) In Courtship Memory, Ahmad N. Abou Tayoun, Claudio Pikielny, Patrick J. Dolph

Dartmouth Scholarship

A role for SK channels in synaptic plasticity has been very well-characterized. However, in the absence of simple genetic animal models, their role in behavioral memory remains elusive. Here, we take advantage of Drosophila melanogaster with its single SK gene (dSK) and well-established courtship memory assay to investigate the contribution of this channel to memory. Using two independent dSK alleles, a null mutation and a dominant negative subunit, we show that while dSK negatively regulates the acquisition of short-term memory 30 min after a short training session, it is required for normal long-term memory 24 h after extended …


Testing Phylogenetic Hypotheses Of The Subgenera Of The Freshwater Crayfish Genus Cambarus (Decapoda: Cambaridae)., Jesse W Breinholt, Megan L Porter, Keith A Crandall Jan 2012

Testing Phylogenetic Hypotheses Of The Subgenera Of The Freshwater Crayfish Genus Cambarus (Decapoda: Cambaridae)., Jesse W Breinholt, Megan L Porter, Keith A Crandall

Computational Biology Institute

BACKGROUND: The genus Cambarus is one of three most species rich crayfish genera in the Northern Hemisphere. The genus has its center of diversity in the Southern Appalachians of the United States and has been divided into 12 subgenera. Using Cambarus we test the correspondence of subgeneric designations based on morphology used in traditional crayfish taxonomy to the underlying evolutionary history for these crayfish. We further test for significant correlation and explanatory power of geographic distance, taxonomic model, and a habitat model to estimated phylogenetic distance with multiple variable regression.

METHODOLOGY/PRINCIPAL FINDINGS: We use three mitochondrial and one nuclear gene …


Micrornas Reveal The Interrelationships Of Hagfish, Lampreys, And Gnathostomes And The Nature Of The Ancestral Vertebrate, Alysha M. Heimberg, Richard Cowper-Sal{Middle Dot}Lari, Marie Semon, Philip C. J. Donoghue, Kevin J. Peterson Nov 2010

Micrornas Reveal The Interrelationships Of Hagfish, Lampreys, And Gnathostomes And The Nature Of The Ancestral Vertebrate, Alysha M. Heimberg, Richard Cowper-Sal{Middle Dot}Lari, Marie Semon, Philip C. J. Donoghue, Kevin J. Peterson

Dartmouth Scholarship

Hagfish and lampreys are the only living representatives of the jawless vertebrates (agnathans), and compared with jawed vertebrates (gnathostomes), they provide insight into the embryology, genomics, and body plan of the ancestral vertebrate. However, this insight has been obscured by controversy over their interrelationships. Morphological cladistic analyses have identified lampreys and gnathostomes as closest relatives, whereas molecular phylogenetic studies recover a monophyletic Cyclostomata (hagfish and lampreys as closest relatives). Here, we show through deep sequencing of small RNA libraries, coupled with genomic surveys, that Cyclostomata is monophyletic: hagfish and lampreys share 4 unique microRNA families, 15 unique paralogues of more …


Temporal Regulation Of The Muscle Gene Cascade By Macho1 And Tbx6 Transcription Factors In Ciona Intestinalis, Jamie E. Kugler, Stefan Gazdoiu, Izumi Oda-Ishii, Yale J. Passamaneck, Albert J. Erives, Anna Di Gregorio Apr 2010

Temporal Regulation Of The Muscle Gene Cascade By Macho1 And Tbx6 Transcription Factors In Ciona Intestinalis, Jamie E. Kugler, Stefan Gazdoiu, Izumi Oda-Ishii, Yale J. Passamaneck, Albert J. Erives, Anna Di Gregorio

Dartmouth Scholarship

For over a century, muscle formation in the ascidian embryo has been representative of 'mosaic' development. The molecular basis of muscle-fate predetermination has been partly elucidated with the discovery of Macho1, a maternal zinc-finger transcription factor necessary and sufficient for primary muscle development, and of its transcriptional intermediaries Tbx6b and Tbx6c. However, the molecular mechanisms by which the maternal information is decoded by cis-regulatory modules (CRMs) associated with muscle transcription factor and structural genes, and the ways by which a seamless transition from maternal to zygotic transcription is ensured, are still mostly unclear. By combining misexpression assays with CRM analyses, …


Ceramide Kinase Regulates Phospholipase C And Phosphatidylinositol 4, 5, Bisphosphate In Phototransduction, Ujjaini Dasgupta, Takeshi Bamba, Salvatore Chiantia, Pusha Karim, Ahmad N. Abou Tayoun Nov 2009

Ceramide Kinase Regulates Phospholipase C And Phosphatidylinositol 4, 5, Bisphosphate In Phototransduction, Ujjaini Dasgupta, Takeshi Bamba, Salvatore Chiantia, Pusha Karim, Ahmad N. Abou Tayoun

Dartmouth Scholarship

Phosphoinositide-specific phospholipase C (PLC) is a central effector for many biological responses regulated by G-protein-coupled receptors including Drosophila phototransduction where light sensitive channels are activated downstream of NORPA, a PLCbeta homolog. Here we show that the sphingolipid biosynthetic enzyme, ceramide kinase, is a novel regulator of PLC signaling and photoreceptor homeostasis. A mutation in ceramide kinase specifically leads to proteolysis of NORPA, consequent loss of PLC activity, and failure in light signal transduction. The mutant photoreceptors also undergo activity-dependent degeneration. Furthermore, we show that a significant increase in ceramide, resulting from lack of ceramide kinase, perturbs the membrane microenvironment of …


Accumulation Of Rhodopsin In Late Endosomes Triggers Photoreceptor Cell Degeneration, Yashodhan Chinchore, Amitavo Mitra, Patrick J. Dolph, Norbert Perrimon Feb 2009

Accumulation Of Rhodopsin In Late Endosomes Triggers Photoreceptor Cell Degeneration, Yashodhan Chinchore, Amitavo Mitra, Patrick J. Dolph, Norbert Perrimon

Dartmouth Scholarship

Progressive retinal degeneration is the underlying feature of many human retinal dystrophies. Previous work using Drosophila as a model system and analysis of specific mutations in human rhodopsin have uncovered a connection between rhodopsin endocytosis and retinal degeneration. In these mutants, rhodopsin and its regulatory protein arrestin form stable complexes, and endocytosis of these complexes causes photoreceptor cell death. In this study we show that the internalized rhodopsin is not degraded in the lysosome but instead accumulates in the late endosomes. Using mutants that are defective in late endosome to lysosome trafficking, we were able to show that rhodopsin accumulates …


Evolution Acts On Enhancer Organization To Fine-Tune Gradient Threshold Readouts, Justin Crocker, Yoichiro Tamori, Albert Erives Nov 2008

Evolution Acts On Enhancer Organization To Fine-Tune Gradient Threshold Readouts, Justin Crocker, Yoichiro Tamori, Albert Erives

Dartmouth Scholarship

The elucidation of principles governing evolution of gene regulatory sequence is critical to the study of metazoan diversification. We are therefore exploring the structure and organizational constraints of regulatory sequences by studying functionally equivalent cis-regulatory modules (CRMs) that have been evolving in parallel across several loci. Such an independent dataset allows a multi-locus study that is not hampered by nonfunctional or constrained homology. The neurogenic ectoderm enhancers (NEEs) of Drosophila melanogaster are one such class of coordinately regulated CRMs. The NEEs share a common organization of binding sites and as a set would be useful to study the relationship …


Regulation Of Meiotic Cohesion And Chromosome Core Morphogenesis During Pachytene In Drosophila Oocytes, Radhika S. Khetani, Sharon E. Bickel Jul 2007

Regulation Of Meiotic Cohesion And Chromosome Core Morphogenesis During Pachytene In Drosophila Oocytes, Radhika S. Khetani, Sharon E. Bickel

Dartmouth Scholarship

During meiosis, cohesion between sister chromatids is required for normal levels of homologous recombination, maintenance of chiasmata and accurate chromosome segregation during both divisions. In Drosophila, null mutations in the ord gene abolish meiotic cohesion, although how ORD protein promotes cohesion has remained elusive. We show that SMC subunits of the cohesin complex colocalize with ORD at centromeres of ovarian germ-line cells. In addition, cohesin SMCs and ORD are visible along the length of meiotic chromosomes during pachytene and remain associated with chromosome cores following DNase I digestion. In flies lacking ORD activity, cohesin SMCs fail to accumulate at oocyte …


Coordinated Regulation Of Myc Trans-Activation Targets By Polycomb And The Trithorax Group Protein Ash1, Julie M. Goodliffe, Michael D. Cole, Eric Wieschaus May 2007

Coordinated Regulation Of Myc Trans-Activation Targets By Polycomb And The Trithorax Group Protein Ash1, Julie M. Goodliffe, Michael D. Cole, Eric Wieschaus

Dartmouth Scholarship

The Myc oncoprotein is a transcriptional regulator whose function is essential for normal development. Myc is capable of binding to 10% of the mammalian genome, and it is unclear how a developing embryo controls the DNA binding of its abundant Myc proteins in order to avoid Myc's potential for inducing tumorigenesis.To identify chromatin binding proteins with a potential role in controlling Myc activity, we established a genetic assay for dMyc activity in Drosophila. We conducted a genome-wide screen using this assay, and identified the Trithorax Group protein Ash1 as a modifier of dMyc activity. Ash1 is a histone methyltransferase known …


From The Cover: Assignment Of An Essential Role For The Neurospora Frequency Gene In Circadian Entrainment To Temperature Cycles, Antonio M. Pregueiro, Nathan Price-Lloyd, Deborah Bell-Pedersen, Christian Heintzen, Jennifer J. Loros, Jay C. Dunlap Feb 2005

From The Cover: Assignment Of An Essential Role For The Neurospora Frequency Gene In Circadian Entrainment To Temperature Cycles, Antonio M. Pregueiro, Nathan Price-Lloyd, Deborah Bell-Pedersen, Christian Heintzen, Jennifer J. Loros, Jay C. Dunlap

Dartmouth Scholarship

Circadian systems include slave oscillators and central pacemakers, and the cores of eukaryotic circadian clocks described to date are composed of transcription and translation feedback loops (TTFLs). In the model system Neurospora, normal circadian rhythmicity requires a TTFL in which a White Collar complex (WCC) activates expression of the frequency (frq) gene, and the FRQ protein feeds back to attenuate that activation. To further test the centrality of this TTFL to the circadian mechanism in Neurospora, we used low-amplitude temperature cycles to compare WT and frq-null strains under conditions in which a banding rhythm was elicited. WT cultures were entrained …


Isolation Of A Collagenase Cdna Clone And Measurement Of Changing Collagenase Mrna Levels During Induction In Rabbit Synovial Fibroblasts., Robert H. Gross, Lynn A. Sheldon, Colin F. Fletcher, Constance E. Brinckerhoff Apr 1984

Isolation Of A Collagenase Cdna Clone And Measurement Of Changing Collagenase Mrna Levels During Induction In Rabbit Synovial Fibroblasts., Robert H. Gross, Lynn A. Sheldon, Colin F. Fletcher, Constance E. Brinckerhoff

Dartmouth Scholarship

To facilitate our studies on the mechanisms controlling collagenase production at a molecular level in rabbit synovial fibroblasts, we have constructed a cDNA library using mRNAs isolated from cells induced with crystals of monosodium urate monohydrate. We have screened this library with cDNA probes made from induced and control mRNA populations. From among 30 clones that hybridized preferentially to the induced-cell probe, 4 contained collagenase sequences. The largest, a clone of 650 base pairs, was identified by its ability to hybrid select a mRNA that could be translated in a cell-free system into a product that was precipitable with monospecific …


Synthesis Of Low Molecular Weight Heat Shock Peptides Stimulated By Ecdysterone In A Cultured Drosophila Cell Line., Robert C. Ireland, Edward M. Berger Feb 1982

Synthesis Of Low Molecular Weight Heat Shock Peptides Stimulated By Ecdysterone In A Cultured Drosophila Cell Line., Robert C. Ireland, Edward M. Berger

Dartmouth Scholarship

Treatment of Schneider's line 3 Drosophila cells with the steroid hormone ecdysterone rapidly stimulated the synthesis and accumulation of the polypeptide previously designated p7 [Berger, E. M., Ireland, R. C. & Wyss, C. (1980) Somatic Cell Genet. 6, 119-129]. In this report, p7 is identified as the 23,000-dalton heat shock polypeptide (hsp23). In addition to hsp23, the synthesis of the low molecular weight heat shock polypeptides hsp22, hsp26, and hsp27 was also stimulated by ecdysterone, although to different extents. Hybridization of a nick-translated genomic clone containing the hsp23 gene to a total RNA blot showed that ecdysterone stimulation of hsp23 …