Open Access. Powered by Scholars. Published by Universities.®

Genetics and Genomics Commons

Open Access. Powered by Scholars. Published by Universities.®

Bioinformatics

Series

Chemistry

Articles 1 - 5 of 5

Full-Text Articles in Genetics and Genomics

Integrated Assessment Of Predicted Mhc Binding And Cross-Conservation With Self Reveals Patterns Of Viral Camouflage, Lu He, Anne S. De Groot, Andres H. Gutierrez, William D. Martin, Lenny Moise, Chris Bailey-Kellogg Mar 2014

Integrated Assessment Of Predicted Mhc Binding And Cross-Conservation With Self Reveals Patterns Of Viral Camouflage, Lu He, Anne S. De Groot, Andres H. Gutierrez, William D. Martin, Lenny Moise, Chris Bailey-Kellogg

Dartmouth Scholarship

Immune recognition of foreign proteins by T cells hinges on the formation of a ternary complex sandwiching a constituent peptide of the protein between a major histocompatibility complex (MHC) molecule and a T cell receptor (TCR). Viruses have evolved means of "camouflaging" themselves, avoiding immune recognition by reducing the MHC and/or TCR binding of their constituent peptides. Computer-driven T cell epitope mapping tools have been used to evaluate the degree to which articular viruses have used this means of avoiding immune response, but most such analyses focus on MHC-facing ‘agretopes'. Here we set out a new means of evaluating the …


Planning Combinatorial Disulfide Cross-Links For Protein Fold Determination, Fei Xiong, Alan M Friedman, Chris Bailey-Kellogg Nov 2011

Planning Combinatorial Disulfide Cross-Links For Protein Fold Determination, Fei Xiong, Alan M Friedman, Chris Bailey-Kellogg

Dartmouth Scholarship

Fold recognition techniques take advantage of the limited number of overall structural organizations, and have become increasingly effective at identifying the fold of a given target sequence. However, in the absence of sufficient sequence identity, it remains difficult for fold recognition methods to always select the correct model. While a native-like model is often among a pool of highly ranked models, it is not necessarily the highest-ranked one, and the model rankings depend sensitively on the scoring function used. Structure elucidation methods can then be employed to decide among the models based on relatively rapid biochemical/biophysical experiments.


Optimization Algorithms For Functional Deimmunization Of Therapeutic Proteins, Andrew S. Parker, Wei Zheng, Karl E. Griswold, Chris Bailey-Kellogg Apr 2010

Optimization Algorithms For Functional Deimmunization Of Therapeutic Proteins, Andrew S. Parker, Wei Zheng, Karl E. Griswold, Chris Bailey-Kellogg

Dartmouth Scholarship

To develop protein therapeutics from exogenous sources, it is necessary to mitigate the risks of eliciting an anti-biotherapeutic immune response. A key aspect of the response is the recognition and surface display by antigen-presenting cells of epitopes, short peptide fragments derived from the foreign protein. Thus, developing minimal-epitope variants represents a powerful approach to deimmunizing protein therapeutics. Critically, mutations selected to reduce immunogenicity must not interfere with the protein's therapeutic activity.


A Novel Ensemble Learning Method For De Novo Computational Identification Of Dna Binding Sites, Arijit Chakravarty, Jonathan M. Carlson, Radhika S. Khetani, Robert H H. Gross Jul 2007

A Novel Ensemble Learning Method For De Novo Computational Identification Of Dna Binding Sites, Arijit Chakravarty, Jonathan M. Carlson, Radhika S. Khetani, Robert H H. Gross

Dartmouth Scholarship

Despite the diversity of motif representations and search algorithms, the de novo computational identification of transcription factor binding sites remains constrained by the limited accuracy of existing algorithms and the need for user-specified input parameters that describe the motif being sought.ResultsWe present a novel ensemble learning method, SCOPE, that is based on the assumption that transcription factor binding sites belong to one of three broad classes of motifs: non-degenerate, degenerate and gapped motifs. SCOPE employs a unified scoring metric to combine the results from three motif finding algorithms each aimed at the discovery of one of these classes of motifs. …


Bounded Search For De Novo Identification Of Degenerate Cis-Regulatory Elements, Jonathan M. Carlson, Arijit Chakravarty, Radhika S. Khetani, Robert H. Gross May 2006

Bounded Search For De Novo Identification Of Degenerate Cis-Regulatory Elements, Jonathan M. Carlson, Arijit Chakravarty, Radhika S. Khetani, Robert H. Gross

Dartmouth Scholarship

The identification of statistically overrepresented sequences in the upstream regions of coregulated genes should theoretically permit the identification of potential cis-regulatory elements. However, in practice many cis-regulatory elements are highly degenerate, precluding the use of an exhaustive word-counting strategy for their identification. While numerous methods exist for inferring base distributions using a position weight matrix, recent studies suggest that the independence assumptions inherent in the model, as well as the inability to reach a global optimum, limit this approach.