Open Access. Powered by Scholars. Published by Universities.®

Genetics and Genomics Commons

Open Access. Powered by Scholars. Published by Universities.®

Biochemistry, Biophysics, and Structural Biology

Department of Biological Sciences Publications

Nutrition, Dietetics

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Genetics and Genomics

Potential Use Of Biotherapeutic Bacteria To Target Colorectal Cancer-Associated Taxa, Gareth Lawrence, Maire Begley, Paul D. Cotter, Caitríona M. Guinane Jan 2020

Potential Use Of Biotherapeutic Bacteria To Target Colorectal Cancer-Associated Taxa, Gareth Lawrence, Maire Begley, Paul D. Cotter, Caitríona M. Guinane

Department of Biological Sciences Publications

The role of the gut microbiome in human health and disease is the focus of much attention. It has been widely agreed upon that our gut bacteria play a role in host immunity, nutrient absorption, digestion, metabolism, and other key drivers of health. Furthermore, certain microbial signatures and specific taxa have also been associated with the development of diseases, such as obesity; inflammatory bowel disease; and, indeed, colorectal cancer (CRC), which is the focus of this review. By extension, such taxa represent potential therapeutic targets. In particular, the emerging human pathogen Fusobacterium nucleatum represents an important agent in CRC development …


Metagenomic Identification Of A Novel Salt Tolerance Gene From The Human Gut Microbiome Which Encodes A Membrane Protein With Homology To A Brp/Blh-Family Beta-Carotene 15,15'-Monooxygenase, Eamonn P. Culligan, Roy D. Sleator, Julian R. Marchesi, Colin Hill Jul 2014

Metagenomic Identification Of A Novel Salt Tolerance Gene From The Human Gut Microbiome Which Encodes A Membrane Protein With Homology To A Brp/Blh-Family Beta-Carotene 15,15'-Monooxygenase, Eamonn P. Culligan, Roy D. Sleator, Julian R. Marchesi, Colin Hill

Department of Biological Sciences Publications

The human gut microbiome consists of at least 3 million non-redundant genes, 150 times that of the core human genome. Herein, we report the identification and characterisation of a novel stress tolerance gene from the human gut metagenome. The locus, assigned brpA, encodes a membrane protein with homology to a brp/blh-family β-carotene monooxygenase. Cloning and heterologous expression of brpA in Escherichia coli confers a significant salt tolerance phenotype. Furthermore, when cultured in the presence of exogenous β-carotene, cell pellets adopt a red/orange pigmentation indicating the incorporation of carotenoids in the cell membrane.