Open Access. Powered by Scholars. Published by Universities.®

Genetics and Genomics Commons

Open Access. Powered by Scholars. Published by Universities.®

Biochemistry

PDF

2019

Institution
Keyword
Publication
Publication Type

Articles 1 - 23 of 23

Full-Text Articles in Genetics and Genomics

Activation And Regulation Of The Alkbh3-Ascc Alkylation Repair Pathway, Josh Brickner Dec 2019

Activation And Regulation Of The Alkbh3-Ascc Alkylation Repair Pathway, Josh Brickner

Arts & Sciences Electronic Theses and Dissertations

DNA repair is essential to prevent the cytotoxic or mutagenic effects of various types of DNA lesions. These lesions are sensed by distinct pathways to recruit repair factors specific to type of damage. In particular, the ALKBH family of proteins recognizes and repairs specific alkylated lesions, including 1-methyladenine (m1A) and 3-methylcytosine (m3C). A major outstanding question in the field is how the AlkB homologue ALKBH3 and its associated protein partners are recruited to sites of alkylation damage and how this repair activity is regulated. Understanding the upstream signaling events that mediate recognition and repair of DNA alkylation damage is particularly …


Multidrug Resistance Regulators Mara, Soxs, Rob, And Rama Repress Flagellar Gene Expression And Motility In Salmonella Enterica Serovar Typhimurium, Srinivas Thota, Lon Chubiz Dec 2019

Multidrug Resistance Regulators Mara, Soxs, Rob, And Rama Repress Flagellar Gene Expression And Motility In Salmonella Enterica Serovar Typhimurium, Srinivas Thota, Lon Chubiz

Biology Department Faculty Works

Production of flagella is costly and subject to global multilayered regulation, which is reflected in the hierarchical control of flagellar production in many bacterial species. For Salmonella enterica serovar Typhimurium and its relatives, global regulation of flagellar production primarily occurs through the control of flhDC transcription and mRNA translation. In this study, the roles of the homologous multidrug resistance regulators MarA, SoxS, Rob, and RamA (constituting the mar-sox-rob regulon in S. Typhimurium) in regulating flagellar gene expression were explored. Each of these regulators was found to inhibit flagellar gene expression, production of flagella, and motility. To different degrees, repression via …


Deepep: A Deep Learning Framework For Identifying Essential Proteins, Min Zeng, Min Li, Fang-Xiang Wu, Yaohang Li, Yi Pan Dec 2019

Deepep: A Deep Learning Framework For Identifying Essential Proteins, Min Zeng, Min Li, Fang-Xiang Wu, Yaohang Li, Yi Pan

Computer Science Faculty Publications

Background: Essential proteins are crucial for cellular life and thus, identification of essential proteins is an important topic and a challenging problem for researchers. Recently lots of computational approaches have been proposed to handle this problem. However, traditional centrality methods cannot fully represent the topological features of biological networks. In addition, identifying essential proteins is an imbalanced learning problem; but few current shallow machine learning-based methods are designed to handle the imbalanced characteristics. Results: We develop DeepEP based on a deep learning framework that uses the node2vec technique, multi-scale convolutional neural networks and a sampling technique to identify essential proteins. …


Multiple Cytosolic Dna Sensors Bind Plasmid Dna After Transfection, Nina Semenova, Masa Bosnjak, Katarina Znidar, Maja Cemazar, Loree Heller Nov 2019

Multiple Cytosolic Dna Sensors Bind Plasmid Dna After Transfection, Nina Semenova, Masa Bosnjak, Katarina Znidar, Maja Cemazar, Loree Heller

Bioelectrics Publications

Mammalian cells express a variety of nucleic acid sensors as one of the first lines of defense against infection. Despite extensive progress in the study of sensor signaling pathways during the last decade, the detailed mechanisms remain unclear. In our previous studies, we reported increased type I interferon expression and the upregulation of several proposed cytosolic DNA sensors after transfection of several tumor cell types with plasmid DNA (pDNA). In the present study, we sought to reveal the early events in the cytosolic sensing of this nucleic acid in a myoblast cell line. We demonstrated that DNA-dependent activator of interferon …


Pot1 Proteins In Green Algae And Land Plants: Dna-Binding Properties And Evidence Of Co-Evolution With Telomeric Dna, Eugene V. Shakirov, Xiangyu Song, Jessica A. Joseph, Dorothy E. Shippen Oct 2019

Pot1 Proteins In Green Algae And Land Plants: Dna-Binding Properties And Evidence Of Co-Evolution With Telomeric Dna, Eugene V. Shakirov, Xiangyu Song, Jessica A. Joseph, Dorothy E. Shippen

Yevgeniy (Eugene) Shakirov

Telomeric DNA terminates with a single-stranded 3′ G-overhang that in vertebrates and fission yeast is bound by POT1 (Protection Of Telomeres). However, no in vitro telomeric DNA binding is associated with Arabidopsis POT1 paralogs. To further investigate POT1–DNA interaction in plants, we cloned POT1 genes from 11 plant species representing major branches of plant kingdom. Telomeric DNA binding was associated with POT1 proteins from the green alga Ostreococcus lucimarinus and two flowering plants, maize and Asparagus. Site-directed mutagenesis revealed that several residues critical for telomeric DNA recognition in vertebrates are functionally conserved in plant POT1 proteins. However, the plant proteins …


Acute Systemic Inflammatory Response To Lipopolysaccharide Stimulation In Pigs Divergently Selected For Residual Feed Intake, Haibo Liu, Kristina M. Feye, Yet T. Nguyen, Anoosh Rakhshandeh, Crystal L. Loving, Jack C. M. Sekkers, Nicholas K. Gabler, Christopher K. Tuggle Oct 2019

Acute Systemic Inflammatory Response To Lipopolysaccharide Stimulation In Pigs Divergently Selected For Residual Feed Intake, Haibo Liu, Kristina M. Feye, Yet T. Nguyen, Anoosh Rakhshandeh, Crystal L. Loving, Jack C. M. Sekkers, Nicholas K. Gabler, Christopher K. Tuggle

Mathematics & Statistics Faculty Publications

Background: It is unclear whether improving feed efficiency by selection for low residual feed intake (RFI) compromises pigs’ immunocompetence. Here, we aimed at investigating whether pig lines divergently selected for RFI had different inflammatory responses to lipopolysaccharide (LPS) exposure, regarding to clinical presentations and transcriptomic changes in peripheral blood cells.

Results: LPS injection induced acute systemic inflammation in both the low-RFI and high-RFI line (n = 8 per line). At 4 h post injection (hpi), the low-RFI line had a significantly lower (p= 0.0075) mean rectal temperature compared to the high-RFI line. However, no significant differences in complete blood count …


Creating A Molecular Map Of The Pediatric Lung, Quinlen F. Marshall Sep 2019

Creating A Molecular Map Of The Pediatric Lung, Quinlen F. Marshall

Forum Lectures

The newborn lung undergoes vast biochemical and physiological changes during adaptation from the intrauterine to the extrauterine environment. Lung morphogenesis continues from birth into early childhood, mediated by dynamic gene expression and a diversity of pulmonary cell types that exhibit remarkable heterogeneity. (Whitsett, JA. et al. Physiol. Rev, 2019). Surprisingly, few studies have solely focused on human lung development during this critical period, and many current studies of lung maturation rely on adult, murine, or diseased samples, limiting their insights and applicability to longitudinal pediatric lung development. Understanding the molecular and physiological nuances of pulmonary development has important clinical relevance, …


Temporal Gene Expression Of Mesenchymal Cells In The Pediatric Lung, Quinlen F. Marshall, Soumyaroop Bhattacharya, Gautam Bandyopadhyay, Ravi Misra, Thomas Mariani, Gloria Pryhuber Aug 2019

Temporal Gene Expression Of Mesenchymal Cells In The Pediatric Lung, Quinlen F. Marshall, Soumyaroop Bhattacharya, Gautam Bandyopadhyay, Ravi Misra, Thomas Mariani, Gloria Pryhuber

Chemistry Student Work

INTRODUCTION: The newborn lung undergoes vast biochemical and physiological changes during adaptation from the intrauterine to the extrauterine environment. Lung morphogenesis continues from birth into early childhood, mediated by dynamic gene expression and a diversity of pulmonary cell types (Whitsett, JA. et al. Physiol. Rev, 2019). Murine models demonstrate that pulmonary mesenchymal cells exhibit remarkable heterogeneity in function and morphology during development, however, confirmation of their role is lacking in human neonates and early childhood (Guo, M. et al. Nat. Comm, 2019). In addition, many current human genomic studies of lung maturation suffer from limited sample size, limiting …


Divergent Transcriptional Regulation Of Suppressors Of Cytokine Signaling Genes In Adipocytes, Paula Mota De Sa Jun 2019

Divergent Transcriptional Regulation Of Suppressors Of Cytokine Signaling Genes In Adipocytes, Paula Mota De Sa

LSU Doctoral Dissertations

The Janus Kinase - Signal Transducer and Activator of Transcription (JAK-STAT) signaling pathway transduces several signals crucial for development and homeostasis. Suppressors of cytokine signaling (SOCS) proteins control JAK-STAT signaling via a negative feedback loop. The transcription factor STAT5 is known to play a significant role in fat cell development and function, and several studies suggest that acetylation may affect STAT5 transcriptional activity. To test this hypothesis, we treated 3T3-L1 adipocytes with growth hormone (GH) to activate STAT5 in the presence or absence of histone deacetylase (HDAC) inhibitors. STAT5 acetylation levels were low in adipocytes and mostly unchanged by the …


Circadian Rhythmicity And Neurodevelopment Of Disco And Grim Mutations In Drosophila Melanogaster, John Patrick Story Apr 2019

Circadian Rhythmicity And Neurodevelopment Of Disco And Grim Mutations In Drosophila Melanogaster, John Patrick Story

EURēCA: Exhibition of Undergraduate Research and Creative Achievement

The death gene grim and its pathway for apoptosis has been studied extensively in Drosophila Melanogaster. The effects of grim mutations on circadian neurodevelopment and locomotor assays have yet to be investigated. Mutations in the gene disconnected (disco) has been shown to disrupt the normal development of the circadian circuitry, specifically the small ventro-lateral neurons (s-LNv’s). Which has shown to severely decrease rhythmicity during free-running periods. Alternatively, we have observed an increase in rhythmicity during free-running periods in grim mutations. Our goal is to investigate the neurodevelopment of the circadian circuitry and their associated locomotor activities in these Drosophila mutations.


Characterization Of Iron-Sulfur Cluster Proteins From Methanococcus Maripaludis, Melody Salmanian Apr 2019

Characterization Of Iron-Sulfur Cluster Proteins From Methanococcus Maripaludis, Melody Salmanian

Honors Theses

No abstract provided.


How A Cell Knows Where To Divide: Oscillation Of Mind In Vivo, Colby Ferreira Apr 2019

How A Cell Knows Where To Divide: Oscillation Of Mind In Vivo, Colby Ferreira

Senior Honors Projects

Over two-million people in the United States are infected by antibiotic resistant bacteria each year. Of this number 23,000 die from these infections and other complications. Due to this, novel antibiotic targets are constantly being investigated. One process in prokaryotes that holds promise is cellular division. Bacterial cells grow and reproduce using a series of proteins known as the cell division machinery. This machinery enables the division of the parental cell into two identical daughter cells. The cell division machinery is similar between bacterial taxa, making it an ideal target for new classes of antibiotics. Therefore, understanding the molecular mechanisms …


Unified Methods For Feature Selection In Large-Scale Genomic Studies With Censored Survival Outcomes, Lauren Spirko-Burns, Karthik Devarajan Mar 2019

Unified Methods For Feature Selection In Large-Scale Genomic Studies With Censored Survival Outcomes, Lauren Spirko-Burns, Karthik Devarajan

COBRA Preprint Series

One of the major goals in large-scale genomic studies is to identify genes with a prognostic impact on time-to-event outcomes which provide insight into the disease's process. With rapid developments in high-throughput genomic technologies in the past two decades, the scientific community is able to monitor the expression levels of tens of thousands of genes and proteins resulting in enormous data sets where the number of genomic features is far greater than the number of subjects. Methods based on univariate Cox regression are often used to select genomic features related to survival outcome; however, the Cox model assumes proportional hazards …


An Automated Bayesian Pipeline For Rapid Analysis Of Single-Molecule Binding Data, Carlas Smith, Karina Jouravleva, Maximiliaan Huisman, Samson M. Jolly, Phillip D. Zamore, David Grünwald Mar 2019

An Automated Bayesian Pipeline For Rapid Analysis Of Single-Molecule Binding Data, Carlas Smith, Karina Jouravleva, Maximiliaan Huisman, Samson M. Jolly, Phillip D. Zamore, David Grünwald

David Grünwald

Single-molecule binding assays enable the study of how molecular machines assemble and function. Current algorithms can identify and locate individual molecules, but require tedious manual validation of each spot. Moreover, no solution for high-throughput analysis of single-molecule binding data exists. Here, we describe an automated pipeline to analyze single-molecule data over a wide range of experimental conditions. In addition, our method enables state estimation on multivariate Gaussian signals. We validate our approach using simulated data, and benchmark the pipeline by measuring the binding properties of the well-studied, DNA-guided DNA endonuclease, TtAgo, an Argonaute protein from the Eubacterium Thermus thermophilus. We …


Supervised Dimension Reduction For Large-Scale "Omics" Data With Censored Survival Outcomes Under Possible Non-Proportional Hazards, Lauren Spirko-Burns, Karthik Devarajan Mar 2019

Supervised Dimension Reduction For Large-Scale "Omics" Data With Censored Survival Outcomes Under Possible Non-Proportional Hazards, Lauren Spirko-Burns, Karthik Devarajan

COBRA Preprint Series

The past two decades have witnessed significant advances in high-throughput ``omics" technologies such as genomics, proteomics, metabolomics, transcriptomics and radiomics. These technologies have enabled simultaneous measurement of the expression levels of tens of thousands of features from individual patient samples and have generated enormous amounts of data that require analysis and interpretation. One specific area of interest has been in studying the relationship between these features and patient outcomes, such as overall and recurrence-free survival, with the goal of developing a predictive ``omics" profile. Large-scale studies often suffer from the presence of a large fraction of censored observations and potential …


Characterization Of Immunomodulatory Microbial Factors In Medicinal Plants, Kriti Kalpana Feb 2019

Characterization Of Immunomodulatory Microbial Factors In Medicinal Plants, Kriti Kalpana

Dissertations, Theses, and Capstone Projects

Medicinal plants are one of the biggest sources of natural products with therapeutic importance. There are currently over 28,000 plants with putative medicinal values. Plant-derived compounds have been explored extensively for various biological activities ranging from anti-cancer, immune-boosting to anti-inflammatory and anti-oxidant. Some of the most important therapeutic agents are of plant-origin, such as paclitaxel from Pacific yew (Taxus brevifolia) and artemisinin from qinghao su (a Chinese medicinal herb; a.k.a. Artemisia annua) to name a few.

The study presented in this thesis started out as classical pharmacognosy research, which focused on the identification of immunostimulatory factors in …


Composition Of The Survival Motor Neuron (Smn) Complex In Drosophila Melanogaster, A. Gregory Matera, Amanda C. Raimer, Casey A. Schmidt, Jo A. Kelly, Gaith N. Droby, David Baillat, Sara Ten Have, Angus I. Lamond, Eric J. Wagner, Kelsey M. Gray Feb 2019

Composition Of The Survival Motor Neuron (Smn) Complex In Drosophila Melanogaster, A. Gregory Matera, Amanda C. Raimer, Casey A. Schmidt, Jo A. Kelly, Gaith N. Droby, David Baillat, Sara Ten Have, Angus I. Lamond, Eric J. Wagner, Kelsey M. Gray

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Spinal Muscular Atrophy (SMA) is caused by homozygous mutations in the human survival motor neuron 1 (SMN1) gene. SMN protein has a well-characterized role in the biogenesis of small nuclear ribonucleoproteins (snRNPs), core components of the spliceosome. SMN is part of an oligomeric complex with core binding partners, collectively called Gemins. Biochemical and cell biological studies demonstrate that certain Gemins are required for proper snRNP assembly and transport. However, the precise functions of most Gemins are unknown. To gain a deeper understanding of the SMN complex in the context of metazoan evolution, we investigated its composition in Drosophila …


Radiation Dose Estimation By Completely Automated Interpretation Of The Dicentric Chromosome Assay, Peter Rogan, Yanxin Li, Ben Shirley, Ruth Wilkins, Farrah Norton, Joan Knoll Jan 2019

Radiation Dose Estimation By Completely Automated Interpretation Of The Dicentric Chromosome Assay, Peter Rogan, Yanxin Li, Ben Shirley, Ruth Wilkins, Farrah Norton, Joan Knoll

Biochemistry Publications

Accuracy of the automated dicentric chromosome (DC) assay relies on metaphase image selection. This study validates a software framework to find the best image selection models that mitigate inter-sample variability. Evaluation methods to determine model quality include the Poisson goodness-of-fit of DC distributions for each sample, residuals after calibration curve fitting and leave-one-out dose estimation errors. The process iteratively searches a pool of selection model candidates by modifying statistical and filter cut-offs to rank the best candidates according to their respective evaluation scores. Evaluation scores minimize the sum of squared errors relative to the actual radiation dose of the calibration …


Transcription Factor Binding Site Clusters Identify Target Genes With Similar Tissue-Wide Expression And Buffer Against Mutations., Peter Rogan, Ruipeng Lu Jan 2019

Transcription Factor Binding Site Clusters Identify Target Genes With Similar Tissue-Wide Expression And Buffer Against Mutations., Peter Rogan, Ruipeng Lu

Biochemistry Publications

Background: The distribution and composition of cis-regulatory modules composed of transcription factor (TF) binding site (TFBS) clusters in promoters substantially determine gene expression patterns and TF targets. TF knockdown experiments have revealed that TF binding profiles and gene expression levels are correlated. We use TFBS features within accessible promoter intervals to predict genes with similar tissue-wide expression patterns and TF targets using Machine Learning (ML). Methods: Bray-Curtis Similarity was used to identify genes with correlated expression patterns across 53 tissues. TF targets from knockdown experiments were also analyzed by this approach to set up the ML framework. TFBSs were …


The Impact Of Household Biocides And Antibiotics On Aquatic Microbial Community Composition, Abdulaziz Saud M Alrashdi Jan 2019

The Impact Of Household Biocides And Antibiotics On Aquatic Microbial Community Composition, Abdulaziz Saud M Alrashdi

Dissertations, Master's Theses and Master's Reports

Triclosan (TCS) is antimicrobial agent that is used in a lot of consumer products, including toothpaste, liquid and bar soap, and cosmetics. TCS has been found in many lakes and rivers in the United States. However, The Food and Drug Administration (FDA) banned TCS recently and it will no longer be used in household products. Despite the recent ban, TCS is known to persist in the environment and may have long-term impacts. We conducted an experiment on using fresh water from three locations Houghton, Green Bay and the Huron Mountains. Our goals in the study is to assess the impact …


Maintenance Of Mammary Epithelial Phenotype By Transcription Factor Runx1 Through Mitotic Gene Bookmarking, Joshua Rose Jan 2019

Maintenance Of Mammary Epithelial Phenotype By Transcription Factor Runx1 Through Mitotic Gene Bookmarking, Joshua Rose

Graduate College Dissertations and Theses

Breast cancer arises from a series of acquired mutations that disrupt normal mammary epithelial homeostasis and create multi-potent cancer stem cells that can differentiate into clinically distinct breast cancer subtypes. Despite improved therapies and advances in early detection, breast cancer remains the leading diagnosed cancer in women.

A predominant mechanism initiating invasion and migration for a variety of cancers including breast, is epithelial-to-mesenchymal transition (EMT). EMT— a trans-differentiation process through which mammary epithelial cells acquire a more aggressive mesenchymal phenotype—is a regulated process during early mammary gland development and involves many transcription factors involved in cell lineage commitment, proliferation, and …


Mutations Of Fus Cause Aggregation Of Rna Binding Proteins, Disruptions In Protein Synthesis, And Dysregulation Of Nonsense Mediated Decay, Marisa Elizabeth Kamelgarn Jan 2019

Mutations Of Fus Cause Aggregation Of Rna Binding Proteins, Disruptions In Protein Synthesis, And Dysregulation Of Nonsense Mediated Decay, Marisa Elizabeth Kamelgarn

Theses and Dissertations--Toxicology and Cancer Biology

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by motor neuron death and subsequent muscle atrophy. Approximately 15% of ALS cases are inheritable, and mutations in the Fused in Sarcoma (FUS) gene contribute to approximately 5% of these cases, as well as about 2% of sporadic cases. FUS performs a diverse set of cellular functions, including being a major regulator of RNA metabolism. FUS undergoes liquid- liquid phase transition in vitro, allowing for its participation in stress granules and RNA transport granules. Phase transition also contributes to the formation of cytoplasmic inclusions found in the …


Mechanisms Of Trinucleotide Repeat Instability During Dna Synthesis, Kara Y. Chan Jan 2019

Mechanisms Of Trinucleotide Repeat Instability During Dna Synthesis, Kara Y. Chan

Theses and Dissertations--Toxicology and Cancer Biology

Genomic instability, in the form of gene mutations, insertions/deletions, and gene amplifications, is one of the hallmarks in many types of cancers and other inheritable genetic disorders. Trinucleotide repeat (TNR) disorders, such as Huntington’s disease (HD) and Myotonic dystrophy (DM) can be inherited and repeats may be extended through subsequent generations. However, it is not clear how the CAG repeats expand through generations in HD. Two possible repeat expansion mechanisms include: 1) polymerase mediated repeat extension; 2) persistent TNR hairpin structure formation persisting in the genome resulting in expansion after subsequent cell division. Recent in vitro studies suggested that a …