Open Access. Powered by Scholars. Published by Universities.®

Forest Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Forest Sciences

Spatial Ecology, Population Structure, And Conservation Of The Wood Turtle, Glyptemys Insculpta, In Central New England, Michael T. Jones May 2009

Spatial Ecology, Population Structure, And Conservation Of The Wood Turtle, Glyptemys Insculpta, In Central New England, Michael T. Jones

Open Access Dissertations

Abstract (Summary) Wood turtles ( Glyptemys insculpta ) are of conservation interest rangewide. Anecdotal accounts demonstrate that some populations have been decimated since 1850, and recent studies demonstrate that declines are still underway. From 2004-2008 I investigated the ecology of wood turtles in Massachusetts and New Hampshire. I obtained between one and five years of annual home range data for 150 turtles, and evaluated population structure at 31 sites in five major watersheds. Seasonal floods displaced 7% of wood turtles annually in one watershed, and accounted for elevated mortality. Twelve wood turtles were displaced < 16.8 km, and two were displaced over a 65-foot dam. Several turtles overwintered at their displacement site and two returned successfully, indicating that floods are a mechanism of population connectivity. Several homing turtles ended up in new areas. Turtles occupied stream segments with gradient < 1%, lower than generally available. Agricultural machinery accounted for most observed mortality, followed by automobiles and mammals. Female turtles exhibit smaller home ranges in agricultural areas. Older turtles move farther from the river than do young turtles, possibly reflecting their familiarity with a former landscape. Population density ranged from 0-40.4 turtles/river-kilometer. The highest densities occur in central New Hampshire and lower densities occur in the Housatonic watershed. Population density is negatively correlated with agriculture at both riparian and watershed scales, and responds unimodally to forest cover. Wood turtle populations in western Massachusetts are declining by 6.6-11.2% annually. I estimated ages of turtles by assessing shell-wear rates from photographs. Wood turtles regularly achieve ages over 80 years, and like related species, do not exhibit clear signs of senescence. Old wood turtles are reproductively dominant, and their survival rates are twice as high as young turtles. Carapace scutes appear to require 80 years to become worn. Population modeling indicates that wood turtle populations are declining in New England due to anthropogenic and natural factors. Conservation efforts must address the effects of agriculture on adult survival. Climate change may negatively affect northeastern wood turtles through increased flooding. Populations in mountainous areas may be likely candidates for conservation because they don't occupy prime agricultural land, but may be more susceptible to floods.


Landscape Ecology Of Large Fires In Southwestern Forests, Usa, Sandra L Haire Feb 2009

Landscape Ecology Of Large Fires In Southwestern Forests, Usa, Sandra L Haire

Doctoral Dissertations 1896 - February 2014

The recent increase in large fires in southwestern forests has prompted concern regarding their ecological consequences. Recognizing the importance of spatial patterns in influencing successional processes, I asked: (1) How do large fires change plant communities?; (2) What are the implications of these changes for ponderosa pine forests?; and (3) What is the relationship of fire severity to gradients of climate, fuels, and topography? To address the first two questions, I studied succession in the woody plant community at two sites that burned in high-severity fire: La Mesa fire in northern New Mexico (1977) and Saddle Mountain in northern Arizona …


Conservation Implications Of A Marbled Salamander, Ambystoma Opacum, Metapopulation Model, Ethan B. Plunkett Jan 2009

Conservation Implications Of A Marbled Salamander, Ambystoma Opacum, Metapopulation Model, Ethan B. Plunkett

Masters Theses 1911 - February 2014

Amphibians are in decline globally and a significantly greater percentage of ambystomatid salamander species are in decline relative to other species; habitat loss contributes significantly to this decline. The goals of this thesis is to better understand extinction risk in a marbled salamander (ambystoma opacum) population and how forestry effects extinction risk. To achieve this goal we first estimated an important life history parameter (Chapter 1) then used a metapopulation model to estimate population viability and determine what aspects of their life history put them most at risk (Chapter 2) and finally predicted extinction risk in response to hypothetical forestry …