Open Access. Powered by Scholars. Published by Universities.®

Other Food Science Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Other Food Science

Physicochemical And Toxicological Assessment Of Antimicrobial Ε-Polylysine-Pectin Complexes, Cynthia L. Lopez Pena Aug 2015

Physicochemical And Toxicological Assessment Of Antimicrobial Ε-Polylysine-Pectin Complexes, Cynthia L. Lopez Pena

Doctoral Dissertations

ε-Polylysine is an appealing FDA-approved, all natural antimicrobial biopolymer effective against a wide range of microorganisms. Its implementation is greatly limited by its strong cationic charge, which has been linked to instability in food systems, perceived astringency and bitterness, and the ability to inhibit lipid digestion. Previous studies have shown that controlled complexation of ε-polylysine with anionic pectin is able to prevent instability and astringency in simplified model food systems, while maintaining the antimicrobial character of polylysine. Isothermal titration calorimetry, micro-electrophoresis, microscopy, and turbidity analyses of the stability of electrostatic pectin-polylysine complexes in the presence of strongly anionic κ-carrageenan, and …


Spray Fabrication Of Layer-By-Layer Antimicrobial N-Halamine Coatings, Anna Denis-Rohr Jul 2015

Spray Fabrication Of Layer-By-Layer Antimicrobial N-Halamine Coatings, Anna Denis-Rohr

Masters Theses

Antimicrobial coatings in which the active agent (e.g. N-halamine) can regenerate activity represent a promising way to prevent microbial cross-contamination. A reported method for applying coatings containing antimicrobial N-halamines is layer-by-layer (LbL) application of polyelectrolytes, which form N-halamines upon cross-linking. Prior reports on dip layer-by-layer (LbL) fabrication have demonstrated the potential of this coating technology; however, spray LbL fabrication would enable more rapid coating and represents a more commercially translatable application technique. In this work, dip and spray LbL methods were used to coat polypropylene (PP) with N-halamine containing bilayers consisting of cross-linked polyethylenimine (PEI) and poly(acrylic acid) (PAA). Further …