Open Access. Powered by Scholars. Published by Universities.®

Food Chemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Other Food Science

DNA barcoding

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Food Chemistry

Identification Of Tuna Species In Raw And Processed Products Using Dna Mini-Barcoding Of The Mitochondrial Control Region, Jiahleen Roungchun, Amanda M. Tabb, Rosalee S. Hellberg Dec 2021

Identification Of Tuna Species In Raw And Processed Products Using Dna Mini-Barcoding Of The Mitochondrial Control Region, Jiahleen Roungchun, Amanda M. Tabb, Rosalee S. Hellberg

Food Science Faculty Articles and Research

Accurate species identification methods are needed to combat tuna fraud, improve tuna stock regulation, and mitigate health risks associated with mislabeled tuna products. The objective of this study was to conduct a market survey of raw and processed tuna products using a DNA mini-barcoding system based on the mitochondrial control region (CR). A total of 80 samples of raw, dried, and canned tuna products were collected at the retail level for CR mini-barcoding analysis. The samples underwent DNA extraction, polymerase chain reaction (PCR), and DNA sequencing of the 236-bp CR mini-barcode. The resulting sequences were searched against GenBank using the …


Identification Of Shark Species In Commercial Products Using Dna Barcoding, Rosalee S. Hellberg, Rachel B. Isaacs, Eduardo L. Hernandez Oct 2018

Identification Of Shark Species In Commercial Products Using Dna Barcoding, Rosalee S. Hellberg, Rachel B. Isaacs, Eduardo L. Hernandez

Food Science Faculty Articles and Research

Sharks are harvested globally and sold in a variety of commercial products. However, they are particularly vulnerable to overfishing and many species are considered protected or endangered. The objective of this study was to identify species in various commercial shark products and to assess the effectiveness of three different DNA barcoding primer sets. Thirty-five products were collected for this study, including fillets, jerky, soup, and cartilage pills. DNA barcoding of these products was undertaken using two full-length primer sets and one mini-barcode primer set within the cytochrome c oxidase subunit (COI) gene. Successfully sequenced samples were then analyzed and identified …