Open Access. Powered by Scholars. Published by Universities.®

Food Science Commons

Open Access. Powered by Scholars. Published by Universities.®

Munster Technological University

2014

Discipline
Keyword
Publication
Publication Type

Articles 1 - 4 of 4

Full-Text Articles in Food Science

Metagenomic Identification Of A Novel Salt Tolerance Gene From The Human Gut Microbiome Which Encodes A Membrane Protein With Homology To A Brp/Blh-Family Beta-Carotene 15,15'-Monooxygenase, Eamonn P. Culligan, Roy D. Sleator, Julian R. Marchesi, Colin Hill Jul 2014

Metagenomic Identification Of A Novel Salt Tolerance Gene From The Human Gut Microbiome Which Encodes A Membrane Protein With Homology To A Brp/Blh-Family Beta-Carotene 15,15'-Monooxygenase, Eamonn P. Culligan, Roy D. Sleator, Julian R. Marchesi, Colin Hill

Department of Biological Sciences Publications

The human gut microbiome consists of at least 3 million non-redundant genes, 150 times that of the core human genome. Herein, we report the identification and characterisation of a novel stress tolerance gene from the human gut metagenome. The locus, assigned brpA, encodes a membrane protein with homology to a brp/blh-family β-carotene monooxygenase. Cloning and heterologous expression of brpA in Escherichia coli confers a significant salt tolerance phenotype. Furthermore, when cultured in the presence of exogenous β-carotene, cell pellets adopt a red/orange pigmentation indicating the incorporation of carotenoids in the cell membrane.


Transcriptome Analysis Of Listeria Monocytogenes Exposed To Biocide Stress Reveals A Multi-System Response Involving Cell Wall Synthesis, Sugar Uptake, And Motility, Aidan Casey, Edward M. Fox, Stephan Schmitz-Esser, Aidan Coffey, Olivia Mcauliffe, Kieran Jordan Feb 2014

Transcriptome Analysis Of Listeria Monocytogenes Exposed To Biocide Stress Reveals A Multi-System Response Involving Cell Wall Synthesis, Sugar Uptake, And Motility, Aidan Casey, Edward M. Fox, Stephan Schmitz-Esser, Aidan Coffey, Olivia Mcauliffe, Kieran Jordan

Department of Biological Sciences Publications

Listeria monocytogenes is a virulent food-borne pathogen most often associated with the consumption of “ready-to-eat” foods. The organism is a common contaminant of food processing plants where it may persist for extended periods of time. A commonly used approach for the control of Listeria monocytogenes in the processing environment is the application of biocides such as quaternary ammonium compounds. In this study, the transcriptomic response of a persistent strain of L. monocytogenes (strain 6179) on exposure to a sub-lethal concentration of the quaternary ammonium compound benzethonium chloride (BZT) was assessed. Using RNA-Seq, gene expression levels were quantified by sequencing …


Phages Of Non-Diary Lactococci: Isolation And Characterization Of Phi L47, A Phage Infecting The Grass Isolate Lactococcus Lactis Ssp Cremoris Dpc6860, Daniel Cavanagh, Caitríona M. Guinane, Horst Neve, Aidan Coffey, R. Paul Ross, Gerald F. Fitzgerald, Olivia Mcauliffe Jan 2014

Phages Of Non-Diary Lactococci: Isolation And Characterization Of Phi L47, A Phage Infecting The Grass Isolate Lactococcus Lactis Ssp Cremoris Dpc6860, Daniel Cavanagh, Caitríona M. Guinane, Horst Neve, Aidan Coffey, R. Paul Ross, Gerald F. Fitzgerald, Olivia Mcauliffe

Department of Biological Sciences Publications

Lactococci isolated from non-dairy sources have been found to possess enhanced metabolic activity when compared to dairy strains. These capabilities may be harnessed through the use of these strains as starter or adjunct cultures to produce more diverse flavor profiles in cheese and other dairy products. To understand the interactions between these organisms and the phages that infect them, a number of phages were isolated against lactococcal strains of non-dairy origin. One such phage, ΦL47, was isolated from a sewage sample using the grass isolate L. lactis ssp. cremoris DPC6860 as a host. Visualization of phage virions by transmission electron …


Investigation Of Pyrrolizidine Alkaloids In Foods Using Liquid Chromatography Mass Spectrometry, Caroline Griffin Jan 2014

Investigation Of Pyrrolizidine Alkaloids In Foods Using Liquid Chromatography Mass Spectrometry, Caroline Griffin

PhDs

Pyrrolizidine Alkaloids (PAs) are known plant toxins which can cause hepatic veno-occlusive disease (HVOD) in both humans and livestock when ingested. Although PAs are primarily known for their hepatotoxicity they also induce genotoxicity, carcinogenicity and pneumotoxicity. PAs are consumed through plants as food, for medicinal purposes, or as contaminants of agricultural crops. Aside from ingesting the plants directly PA exposure may occur through the consumption of honey produced by bees that visit PA-containing plants or by drinking milk produced by animals that have consumed PA-containing plants. Possible PA contamination in our food chain is a potential health risk.

To assess …