Open Access. Powered by Scholars. Published by Universities.®

Food Science Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Food Science

Micro-Physiological Models To Mimic Mucosal Barrier Complexity Of The Human Intestine In Vitro, Abhinav Sharma Dec 2020

Micro-Physiological Models To Mimic Mucosal Barrier Complexity Of The Human Intestine In Vitro, Abhinav Sharma

Doctoral Dissertations

The mucosal barrier in the intestine is vital to maintain selective absorption of nutrients while protecting internal tissues and maintaining symbiotic relationship with luminal microbiota. This bio-barrier consists of a cellular epithelial barrier and an acellular mucus barrier. Secreted mucus regulates barrier function via in situ biochemical and biophysical interaction with luminal content that continually evolves during digestion and absorption. Increasing evidence suggests that a mucus barrier is indispensable to maintain homeostasis in the gastrointestinal tract. However, the importance of mucus barrier is largely underrated for in vitro mucosal tissue modeling. The major gap is the lack of experimental material …


The Exploration Of Nanotoxicological Copper And Interspecific Saccharomyces Hybrids, Matthew Joseph Winans Phd Jan 2020

The Exploration Of Nanotoxicological Copper And Interspecific Saccharomyces Hybrids, Matthew Joseph Winans Phd

Graduate Theses, Dissertations, and Problem Reports

Nanotechnology takes advantage of cellular biology’s natural nanoscale operations by interacting with biomolecules differently than soluble or bulk materials, often altering normal cellular processes such as metabolism or growth. To gain a better understanding of how copper nanoparticles hybridized on cellulose fibers called carboxymethyl cellulose (CMC) affected growth of Saccharomyces cerevisiae, the mechanisms of toxicity were explored. Multiple methodologies covering genetics, proteomics, metallomics, and metabolomics were used during this investigation. The work that lead to this dissertation discovered that these cellulosic copper nanoparticles had a unique toxicity compared to copper. Further investigation suggested a possible ionic or molecular mimicry …