Open Access. Powered by Scholars. Published by Universities.®

Ecology and Evolutionary Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

None

Environmental Microbiology and Microbial Ecology

Xenopus

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Ecology and Evolutionary Biology

Regulatory Elements Of Xenopus Col2a1 Drive Cartilaginous Gene Expression In Transgenic Frogs, Ryan Kerney, Brian K. Hall, James Hanken Dec 2009

Regulatory Elements Of Xenopus Col2a1 Drive Cartilaginous Gene Expression In Transgenic Frogs, Ryan Kerney, Brian K. Hall, James Hanken

Ryan Kerney

This study characterizes regulatory elements of collagen 2α1 (col2a1) in Xenopus that enable transgene expression in cartilage-forming chondrocytes. The reporters described in this study drive strong cartilage-specific gene expression, which will be a valuable tool for further investigations of Xenopus skeletal development. While endogenous col2a1 mRNA is expressed in many embryonic tissues, its expression becomes restricted to tadpole and adult chondrocytes. This chondrocyte-specific expression is recapitulated by col2a1 reporter constructs, which were tested through I-SceI meganuclease-mediated transgenesis. These constructs contain a portion of the Xenopus tropicalis col2a1 intron, which aligns to a cartilage-specific intronic enhancer that has been well characterized …


Skeletal Advance And Arrest In Giant Non-Metamorphosing African Clawed Frog Tadpoles (Xenopus Laevis: Daudin), Ryan Kerney, Richard Wassersug, Brian Hall Dec 2008

Skeletal Advance And Arrest In Giant Non-Metamorphosing African Clawed Frog Tadpoles (Xenopus Laevis: Daudin), Ryan Kerney, Richard Wassersug, Brian Hall

Ryan Kerney

This study examines the skeletons of giant non-metamorphosing (GNM) Xenopus laevis tadpoles, which arrest their development indefinitely before metamorphosis, and grow to excessively large sizes in the absence of detectable thyroid glands. Cartilage growth is isometric; however, chondrocyte size is smaller in GNM tadpoles than in controls. Most cartilages stain weakly with alcian blue, and several cartilages are calcified (unlike con- trols). However, cartilages subjacent to periosteum-derived bone retain strong affinities for alcian blue, indicat- ing a role for periosteum-derived bone in the retention of glycosaminoglycans during protracted larval growth. Bone formation in the head, limb, and axial skeletons is …