Open Access. Powered by Scholars. Published by Universities.®

Cell and Developmental Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Internal Medicine Faculty Publications

Series

Animals

Articles 1 - 4 of 4

Full-Text Articles in Cell and Developmental Biology

Phospholipases D: Making Sense Of Redundancy And Duplication, Andrew J. Morris Jun 2019

Phospholipases D: Making Sense Of Redundancy And Duplication, Andrew J. Morris

Internal Medicine Faculty Publications

Why have two genes when one would suffice? Evolutionary pressure means that biology, unlike government, is generally intolerant of wasted effort. Therefore, when multiple genes exist presumably they are there to provide some benefit to the organism even if that benefit is not immediately obvious to us scientists. A recent report from Raghu and colleagues (Biosci. Rep. (2018) 38, pii: BSR20181690) [1] sheds some light on one possible reason for the existence of two Phospholipases D genes in chordates when only one is present in invertebrates.


Inducible Nitric Oxide Synthase (Inos) Is A Novel Negative Regulator Of Hematopoietic Stem/Progenitor Cell Trafficking, Mateusz Adamiak, Ahmed Abdelbaset-Ismail, Joseph B. Moore Iv, J. Zhao, Ahmed Abdel-Latif, Marcin Wysoczynski, Mariusz Z. Ratajczak Feb 2017

Inducible Nitric Oxide Synthase (Inos) Is A Novel Negative Regulator Of Hematopoietic Stem/Progenitor Cell Trafficking, Mateusz Adamiak, Ahmed Abdelbaset-Ismail, Joseph B. Moore Iv, J. Zhao, Ahmed Abdel-Latif, Marcin Wysoczynski, Mariusz Z. Ratajczak

Internal Medicine Faculty Publications

Nitric oxide (NO) is a gaseous free radical molecule involved in several biological processes related to inflammation, tissue damage, and infections. Based on reports that NO inhibits migration of granulocytes and monocytes, we became interested in the role of inducible NO synthetase (iNOS) in pharmacological mobilization of hematopoietic stem/progenitor cells (HSPCs) from bone marrow (BM) into peripheral blood (PB). To address the role of NO in HSPC trafficking, we upregulated or downregulated iNOS expression in hematopoietic cell lines. Next, we performed mobilization studies in iNOS−/− mice and evaluated engraftment of iNOS−/− HSPCs in wild type (control) animals. Our …


Novel Evidence That The Mannan-Binding Lectin Pathway Of Complement Activation Plays A Pivotal Role In Triggering Mobilization Of Hematopoietic Stem/Progenitor Cells By Activation Of Both The Complement And Coagulation Cascades, M. Adamiak, A. Abdelbaset-Ismail, M. Suszynska, Ahmed K. Abdel-Latif, J. Ratajczak, M. Z. Ratajczak Jan 2017

Novel Evidence That The Mannan-Binding Lectin Pathway Of Complement Activation Plays A Pivotal Role In Triggering Mobilization Of Hematopoietic Stem/Progenitor Cells By Activation Of Both The Complement And Coagulation Cascades, M. Adamiak, A. Abdelbaset-Ismail, M. Suszynska, Ahmed K. Abdel-Latif, J. Ratajczak, M. Z. Ratajczak

Internal Medicine Faculty Publications

No abstract provided.


Evidence That A Lipolytic Enzyme—Hematopoietic-Specific Phospholipase C-Β2—Promotes Mobilization Of Hematopoietic Stem Cells By Decreasing Their Lipid Raft-Mediated Bone Marrow Retention And Increasing The Promobilizing Effects Of Granulocytes, M. Adamiak, A. Poniewierska-Baran, S. Borkowska, G. Schneider, A. Abdelbaset-Ismail, M. Suszynska, Ahmed Abdel-Latif, M. Kucia, J. Ratajczak, M. Z. Ratajczak Apr 2016

Evidence That A Lipolytic Enzyme—Hematopoietic-Specific Phospholipase C-Β2—Promotes Mobilization Of Hematopoietic Stem Cells By Decreasing Their Lipid Raft-Mediated Bone Marrow Retention And Increasing The Promobilizing Effects Of Granulocytes, M. Adamiak, A. Poniewierska-Baran, S. Borkowska, G. Schneider, A. Abdelbaset-Ismail, M. Suszynska, Ahmed Abdel-Latif, M. Kucia, J. Ratajczak, M. Z. Ratajczak

Internal Medicine Faculty Publications

Hematopoietic stem/progenitor cells (HSPCs) reside in the bone marrow (BM) microenvironment and are retained there by the interaction of membrane lipid raft-associated receptors, such as the α-chemokine receptor CXCR4 and the α4β1-integrin (VLA-4, very late antigen 4 receptor) receptor, with their respective specific ligands, stromal-derived factor 1 and vascular cell adhesion molecule 1, expressed in BM stem cell niches. The integrity of the lipid rafts containing these receptors is maintained by the glycolipid glycosylphosphatidylinositol anchor (GPI-A). It has been reported that a cleavage fragment of the fifth component of the activated complement cascade, C5a, has an …