Open Access. Powered by Scholars. Published by Universities.®

Cell and Developmental Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 15 of 15

Full-Text Articles in Cell and Developmental Biology

Hepatic Nutrient And Hormonal Regulation Of The Pancreatic-Derived Factor (Pander) Promoter, Whitney Ratliff Nov 2015

Hepatic Nutrient And Hormonal Regulation Of The Pancreatic-Derived Factor (Pander) Promoter, Whitney Ratliff

USF Tampa Graduate Theses and Dissertations

PANcreatic-DERived factor (PANDER, FAM3B) has been shown to regulate glycemic levels via interactions with both pancreatic islets and the liver. Although PANDER is predominantly expressed from the endocrine pancreas, recent work has provided sufficient evidence that the liver may also be an additional tissue source of PANDER production. At physiological levels, PANDER is capable of disrupting insulin signaling and promoting increased hepatic glucose production. As shown in some animal models, strong expression of PANDER, induced by viral delivery within the liver, induces hepatic steatosis. However, no studies to date have explicitly characterized the transcriptional regulation of PANDER from the liver. …


Characterization And Diurnal Measurement Of Oral Inflammation In Association With Glycemic Control, Periodontal Status, & Glucose Stimulation, Melanie N. Kuehl Oct 2015

Characterization And Diurnal Measurement Of Oral Inflammation In Association With Glycemic Control, Periodontal Status, & Glucose Stimulation, Melanie N. Kuehl

USF Tampa Graduate Theses and Dissertations

Diabetes has afflicted 8.3%, approximately 25.8 million, of the United States population and is the seventh leading cause of death [1]. Type I diabetes (T1D) accounts for 5 to 10% of all diagnosed cases of diabetes in the United States [2]. If present trends continue, the rate of T1D incidence among children under the age of 14 will increase by 3% globally [3]. T1D is an autoimmune disorder in which the β-cells of the pancreatic islets are destroyed, leading to high blood sugar. Hyperglycemia and loss of immunological tolerance to self-antigens are common associations of T1D [4]. Periodontal disease impacts …


Function Of Long Noncoding Rnas In Breast Cancer, Edward J. Richards Sep 2015

Function Of Long Noncoding Rnas In Breast Cancer, Edward J. Richards

USF Tampa Graduate Theses and Dissertations

Breast cancer is a disease that will be diagnosed in about 1 in 10 women throughout their lifetime. The majority of breast cancers are originated from the epithelial cells of the mammary ducts, and this occurrence can be due to several factors including hereditary and acquired mutation. There are several major breast cancer subtypes, including estrogen receptor-α (ERα)-positive, HER2-enriched and triple-negative (TNBC). Patients diagnosed with ER+ tumors are generally treated with estrogen blockers (e.g., tamoxifen, letrozole and fulvestrant). Patients with HER2+ tumors are commonly administered with drugs that block HER2 signaling (e.g., trastuzumab) or inhibit HER2’s tyrosine kinase activity (e.g., …


Aspirin Triggered Resolution Phase Interaction Product D1: A Novel Treatment For Hyperoxic Acute Lung Injury, Ruan Rollin Cox, Jr. Jul 2015

Aspirin Triggered Resolution Phase Interaction Product D1: A Novel Treatment For Hyperoxic Acute Lung Injury, Ruan Rollin Cox, Jr.

USF Tampa Graduate Theses and Dissertations

Acute Lung injury (ALI) and the more severe acute respiratory distress syndrome (ARDS) are respiratory maladies that present immense clinical challenges. ALI affects 200,000 individuals annually and features a 40% mortality rate. ALI can be initiated by both pathogenic and sterile insults originating locally in the lungs or systemically. While immense research has been poured into this disease in an effort to find a therapeutic strategy, the heterogeneously diffuse nature of the disease has not yielded a cure for the disease. Death from this disease is strongly attributed to reduced gas exchange from a severely compromised alveolar-capillary barrier. The only …


Promoting Genome Stability Via Multiple Dna Repair Pathways, Scott Cukras Feb 2015

Promoting Genome Stability Via Multiple Dna Repair Pathways, Scott Cukras

USF Tampa Graduate Theses and Dissertations

Maintaining genome integrity is indispensible for cells to prevent and limit accruement of deleterious mutations and to promote viable cell growth and proliferation. Cells possess a myriad of mechanisms to detect, prevent and repair incurred cellular damage. Here we discuss various proteins and their accompanying cellular pathways that promote genome stability. We first investigate the NEDD8 protein and its role in promoting homologous recombination repair via multiple Cullin E3 ubiquitin ligases. We provide specific mechanisms through which, UBE2M, an E2 conjugating enzyme, neddylates various Cullin ligases to render them catalytically active to degrade their substrates by the proteasome. We show …


Strategies For Preventing Age And Neurodegenerative Disease-Associated Mitochondrial Dysfunction, Vedad Delic Jan 2015

Strategies For Preventing Age And Neurodegenerative Disease-Associated Mitochondrial Dysfunction, Vedad Delic

USF Tampa Graduate Theses and Dissertations

Mitochondrial dysfunction plays a pivotal role in the development of aging phenotypes and aging-associated neurodegenerative disorders, such as Alzheimer’s disease (AD), Parkinson’s disease (PD) and Amyotrophic lateral sclerosis (ALS). Strategies that restore mitochondrial dysfunction may rescue the deficits of central metabolism in these disorders and improve cell survival. For example, we found that modulating the mTOR signaling pathway in a tissue culture model of aging-induced mitochondrial DNA mutation enhanced mitochondrial function as evidenced by increased oxygen consumption. Our previous melatonin studies also led us to hypothesize that caloric restriction and the hormone melatonin would reverse brain mitochondrial dysfunction in animal …


The Role Of Brct-Containing Proteins Brca1 And Paxip1 In Cancer, Ankita Jhuraney Jan 2015

The Role Of Brct-Containing Proteins Brca1 And Paxip1 In Cancer, Ankita Jhuraney

USF Tampa Graduate Theses and Dissertations

Modular domains of proteins are important in cellular signaling processes. Eukaryotic cells are constantly undergoing DNA damage due to exogenous and endogenous sources of damage. The DNA damage response (DDR) involves a complex network of signaling events mediated by modular domains such as the BRCT (BRCA1 C-terminal) domains. Therefore, proteins containing BRCT domains are important for DNA damage detection and signaling. In this dissertation, we focus on two BRCT-containing proteins BRCA1 and PAXIP1. BRCA1 is a gene that is known to be associated with increased risk of hereditary breast and ovarian cancer. Germline variants of BRCA1 are assessed to determine …


The Νsaα Specific Lipoprotein Like Cluster (Lpl) Of S. Aureus Usa300 Contributes To Immune Stimulation And Invasion In Human Cells, Minh Thu Nguyen, Beatrice Kraft, Wenqi Yu, Dogan Doruk Demicrioglu, Tobias Hertlein, Marc Burian, Mathias Schmaler, Klaus Boller, Isabelle Bekeredjian-Ding, Knut Ohlsen, Birgit Schittek, Friedrich Götz Jan 2015

The Νsaα Specific Lipoprotein Like Cluster (Lpl) Of S. Aureus Usa300 Contributes To Immune Stimulation And Invasion In Human Cells, Minh Thu Nguyen, Beatrice Kraft, Wenqi Yu, Dogan Doruk Demicrioglu, Tobias Hertlein, Marc Burian, Mathias Schmaler, Klaus Boller, Isabelle Bekeredjian-Ding, Knut Ohlsen, Birgit Schittek, Friedrich Götz

Molecular Biosciences Faculty Publications

All Staphylococcus aureus genomes contain a genomic island, which is termed νSaα and characterized by two clusters of tandem repeat sequences, i.e. the exotoxin (set) and 'lipoprotein-like' genes (lpl). Based on their structural similarities the νSaα islands have been classified as type I to IV. The genomes of highly pathogenic and particularly epidemic S. aureus strains (USA300, N315, Mu50, NCTC8325, Newman, COL, JH1 or JH9) belonging to the clonal complexes CC5 and CC8 bear a type I νSaα island. Since the contribution of the lpl gene cluster encoded in the νSaα island to virulence is unclear to date, we deleted …


Ikaros Deficiency Leads To An Imbalance In Effector And Regulatory T Cell Homeostasis In Murine Pancreatic Cancer, Nadine D. Nelson Jan 2015

Ikaros Deficiency Leads To An Imbalance In Effector And Regulatory T Cell Homeostasis In Murine Pancreatic Cancer, Nadine D. Nelson

USF Tampa Graduate Theses and Dissertations

Pancreatic cancer is one of the deadliest cancers with a five-year survival rate of 6%. Pancreatic cancer is resistant to conventional chemotherapy and is usually diagnosed at late stages. Current treatment options have minimal effects in extending patients' lives beyond 10 months. One significant limitation in developing treatments to combat pancreatic cancer is its immunosuppressive microenvironment. Pancreatic cancer secretes factors that activate immunosuppressive cells, such as regulatory T cells (Tregs). These Tregs suppress effector CD4+ and CD8+ T cell anti-tumor immune responses. Therefore, novel treatment options to reduce Treg-mediated immune suppression and increase the numbers and functions of …


Regulation And Targeting Of The Fancd2 Activation In Dna Repair, Valentina Celeste Caceres Jan 2015

Regulation And Targeting Of The Fancd2 Activation In Dna Repair, Valentina Celeste Caceres

USF Tampa Graduate Theses and Dissertations

Fanconi anemia (FA) is a genome instability syndrome that is clinically manifested by bone marrow failure, congenital defects, and elevated cancer susceptibility. The FA pathway is known to regulate the repair of DNA interstrand crosslinks in part through DNA homologous recombination (HR) repair. Up to today 16 FA proteins have been discovered that may participate in the common pathway. Cells that have mutations in the FA genes are hypersensitive to DNA damaging agents and display chromosome instability. A key regulatory event in the FA pathway is monoubiquitination of FANCD2-FANCI heterodimer that is mediated by a multi-component E3 ubiquitin ligase complex …


High-Throughput Screening Of Age-Related Changes In Caenorhabditis Elegans, Neil Copes Jan 2015

High-Throughput Screening Of Age-Related Changes In Caenorhabditis Elegans, Neil Copes

USF Tampa Graduate Theses and Dissertations

This project was developed to identify novel methods for high-throughput culturing and screening of C. elegans to investigate age-related metabolic changes and to survey the proteomic and metabolomic factors associated with age-related changes. To accomplish these goals we developed a novel way to grow C. elegans in liquid culture in 96-well microplates for several weeks without suffering significant fluid loss due to evaporation and without needing to shake or unseal the plates for aeration. We also developed methods for assaying the total volume of live C. elegans in microplate cultures using a fluorescence microplate reader and for performing RNAi experiments …


Genomic Aberrations At The 3q And 14q Loci: Investigation Of Key Players In Ovarian And Renal Cancer Biology, Punashi Dutta Jan 2015

Genomic Aberrations At The 3q And 14q Loci: Investigation Of Key Players In Ovarian And Renal Cancer Biology, Punashi Dutta

USF Tampa Graduate Theses and Dissertations

Genomic aberrations are primary contributors to the pathophysiology of cancer [11]. Dysregulated expression of genes located within these aberrations are important predictors of chemoresistance, disease prognosis, and patient outcome [12]. This dissertation is focused on understanding the regulation and/or functions of specific genes located at dysregulated genomic regions such as 3q26 and 14q32 in the biology of ovarian and renal cancer, respectively.

Serous epithelial ovarian cancer (EOC) manifest amplification at the 3q26.2 locus [2], an observation consistent with the cancer genome atlas (TCGA) [13]. The most amplified gene in this region is EVI1 which has been extensively studied in hematological …


The Effects Of Supplemented Metabolites On Lifespan And Stress Response Pathways In Caenorhabditis Elegans, Clare B. Edwards Jan 2015

The Effects Of Supplemented Metabolites On Lifespan And Stress Response Pathways In Caenorhabditis Elegans, Clare B. Edwards

USF Tampa Graduate Theses and Dissertations

Understanding how metabolites contribute to anaplerosis, antioxidant effects, and hormetic pathways during aging is fundamental to creating supplements and dietary habits that may decrease age-associated disease and decline, thus improving the quality of life in old age. In order to uncover metabolic pathways that delay aging, the effects of large sets of metabolites associated with mitochondrial function on lifespan were investigated.

Malate, the tricarboxylic acid (TCA) cycle metabolite, increased lifespan and thermotolerance in C. elegans. Addition of fumarate and succinate also extended lifespan and all three metabolites activated nuclear translocation of the cytoprotective DAF-16/FOXO transcription factor and protected from paraquat-induced …


Targeting T-Bet For Prevention Of Graft-Versus-Host Disease And Leukemia Relapse After Allogeneic Hematopoietic Stem Cell Transplantation, Jianing Fu Jan 2015

Targeting T-Bet For Prevention Of Graft-Versus-Host Disease And Leukemia Relapse After Allogeneic Hematopoietic Stem Cell Transplantation, Jianing Fu

USF Tampa Graduate Theses and Dissertations

Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is an effective therapeutic option for many malignant diseases. However, the efficacy of allo-HSCT is limited by the occurrence of destructive graft-versus-host disease (GVHD). Since allogeneic T cells are the driving force in the development of GVHD, their activation, proliferation, and differentiation are key factors to understanding GVHD pathogenesis. On the other hand, antigen-presenting cells (APCs) are essential for allogeneic T-cell priming and the development of GVHD. The T-box transcription factor T-bet is a master regulator for IFN-γ production and Th1 differentiation. T-bet also regulates the functions of APCs including dendritic cells (DCs) and …


Inhibition Of Shp2 Suppresses Mutant Egfr-Induced Lung Tumors In Transgenic Mouse Model Of Lung Adenocarcinoma, Valentina E. Schneeberger, Yuan Ren, Noreen Luetteke, Qingling Huang, Liwei Chen, Harshani R. Lawrence, Nicholas J. Lawrence, Eric B. Haura, John M. Koomen, Domenico Coppola, Jie Wu Jan 2015

Inhibition Of Shp2 Suppresses Mutant Egfr-Induced Lung Tumors In Transgenic Mouse Model Of Lung Adenocarcinoma, Valentina E. Schneeberger, Yuan Ren, Noreen Luetteke, Qingling Huang, Liwei Chen, Harshani R. Lawrence, Nicholas J. Lawrence, Eric B. Haura, John M. Koomen, Domenico Coppola, Jie Wu

Molecular Biosciences Faculty Publications

Epidermal growth factor receptor (EGFR) mutants drive lung tumorigenesis and are targeted for therapy. However, resistance to EGFR inhibitors has been observed, in which the mutant EGFR remains active. Thus, it is important to uncover mediators of EGFR mutant-driven lung tumors to develop new treatment strategies. The protein tyrosine phosphatase (PTP) Shp2 mediates EGF signaling. Nevertheless, it is unclear if Shp2 is activated by oncogenic EGFR mutants in lung carcinoma or if inhibiting the Shp2 PTP activity can suppress EGFR mutant-induced lung adenocarcinoma. Here, we generated transgenic mice containing a doxycycline (Dox)-inducible PTP-defective Shp2 mutant (tetO-Shp2CSDA). Using the rat Clara …