Open Access. Powered by Scholars. Published by Universities.®

Cell and Developmental Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 20 of 20

Full-Text Articles in Cell and Developmental Biology

A Mitochondria-Anchored Isoform Of The Actin-Nucleating Spire Protein Regulates Mitochondrial Division, Uri Manor, Sadie Bartholomew, Gonen Golani, Eric Christenson, Michael Kozlov, Henry Higgs, James Spudich, Jennifer Lippincott-Schwartz Aug 2015

A Mitochondria-Anchored Isoform Of The Actin-Nucleating Spire Protein Regulates Mitochondrial Division, Uri Manor, Sadie Bartholomew, Gonen Golani, Eric Christenson, Michael Kozlov, Henry Higgs, James Spudich, Jennifer Lippincott-Schwartz

Dartmouth Scholarship

Mitochondrial division, essential for survival in mammals, is enhanced by an inter-organellar process involving ER tubules encircling and constricting mitochondria. The force for constriction is thought to involve actin polymerization by the ER-anchored isoform of the formin protein inverted formin 2 (INF2). Unknown is the mechanism triggering INF2-mediated actin polymerization at ER-mitochondria intersections. We show that a novel isoform of the formin-binding, actin-nucleating protein Spire, Spire1C, localizes to mitochondria and directly links mitochondria to the actin cytoskeleton and the ER. Spire1C binds INF2 and promotes actin assembly on mitochondrial surfaces. Disrupting either Spire1C actin- or formin-binding activities reduces mitochondrial constriction …


Trip/Nopo E3 Ubiquitin Ligase Promotes Ubiquitylation Of Dna Polymerase Η, Heather A. Wallace, Julie A. Merkle, Michael C. Yu, Taloa G. Berg, Ethan Lee, Giovanni Bosco, Laura A. Lee Jan 2014

Trip/Nopo E3 Ubiquitin Ligase Promotes Ubiquitylation Of Dna Polymerase Η, Heather A. Wallace, Julie A. Merkle, Michael C. Yu, Taloa G. Berg, Ethan Lee, Giovanni Bosco, Laura A. Lee

Dartmouth Scholarship

We previously identified a Drosophila maternal effect-lethal mutant named ‘no poles’ (nopo). Embryos from nopo females undergo mitotic arrest with barrel-shaped, acentrosomal spindles during the rapid cycles of syncytial embryogenesis because of activation of a Chk2-mediated DNA checkpoint. NOPO is the Drosophila homolog of human TNF receptor associated factor (TRAF)-interacting protein (TRIP), which has been implicated in TNF signaling. NOPO and TRIP contain RING domains closely resembling those of known E3 ubiquitin ligases. We herein sought to elucidate the mechanism by which TRIP/NOPO promotes genomic stability by performing a yeast two-hybrid screen to identify potential substrates/interactors. We identified members of …


Adam17-Mediated Processing Of Tnf-Α Expressed By Antiviral Effector Cd8+ T Cells Is Required For Severe T-Cell-Mediated Lung Injury, Matthew P. Deberge, Kenneth H. Ely, Guang-Shing Cheng, Richard I. Enelow Nov 2013

Adam17-Mediated Processing Of Tnf-Α Expressed By Antiviral Effector Cd8+ T Cells Is Required For Severe T-Cell-Mediated Lung Injury, Matthew P. Deberge, Kenneth H. Ely, Guang-Shing Cheng, Richard I. Enelow

Dartmouth Scholarship

Influenza infection in humans evokes a potent CD8+ T-cell response, which is important for clearance of the virus but may also exacerbate pulmonary pathology. We have previously shown in mice that CD8+ T-cell expression of TNF-a is required for severe and lethal lung injury following recognition of an influenza antigen expressed by alveolar epithelial cells. Since TNF-a is first expressed as a transmembrane protein that is then proteolytically processed to release a soluble form, we sought to characterize the role of TNF-a processing in CD8+ T-cell-mediated injury. In this study we observed that inhibition of ADAM17-mediated processing of TNF-a by …


P53'S Choice Of Myocardial Death Or Survival: Oxygen Protects Infarct Myocardium By Recruiting P53 On Nos3 Promoter Through Regulation Of P53-Lys118 Acetylation, Rajan Gogna, Esha Madan, Mahmood Khan, Uttam Pati, Periannan Kuppusamy Aug 2013

P53'S Choice Of Myocardial Death Or Survival: Oxygen Protects Infarct Myocardium By Recruiting P53 On Nos3 Promoter Through Regulation Of P53-Lys118 Acetylation, Rajan Gogna, Esha Madan, Mahmood Khan, Uttam Pati, Periannan Kuppusamy

Dartmouth Scholarship

Myocardial infarction, an irreversible cardiac tissue damage, involves progressive loss of cardiomyocytes due to p53-mediated apoptosis. Oxygenation is known to promote cardiac survival through activation of NOS3 gene. We hypothesized a dual role for p53, which, depending on oxygenation, can elicit apoptotic death signals or NOS3-mediated survival signals in the infarct heart. p53 exhibited a differential DNA-binding, namely, BAX-p53RE in the infarct heart or NOS3-p53RE in the oxygenated heart, which was regulated by oxygen-induced, post- translational modification of p53. In the infarct heart, p53 was heavily acetylated at Lys118 residue, which was exclusively reversed in the oxygenated heart, apparently regulated …


Interleukin-1Β Mediates Metalloproteinase-Dependent Renal Cell Carcinoma Tumor Cell Invasion Through The Activation Of Ccaat Enhancer Binding Protein Β, Brenda L. Petrella, Matthew P. P. Vincenti May 2012

Interleukin-1Β Mediates Metalloproteinase-Dependent Renal Cell Carcinoma Tumor Cell Invasion Through The Activation Of Ccaat Enhancer Binding Protein Β, Brenda L. Petrella, Matthew P. P. Vincenti

Dartmouth Scholarship

Effective treatment of metastatic renal cell carcinoma (RCC) remains a major medical concern, as these tumors are refractory to standard therapies and prognosis is poor. Although molecularly targeted therapies have shown some promise in the treatment of this disease, advanced RCC tumors often develop resistance to these drugs. Dissecting the molecular mechanisms underlying the progression to advanced disease is necessary to design alternative and improved treatment strategies. Tumor-associated macrophages (TAMs) found in aggressive RCC tumors produce a variety of inflammatory cytokines, including interleukin-1 b (IL-1b). Moreover, the presence of TAMs and high serum levels of IL-1b in RCC patients correlate …


Pv1 Down-Regulation Via Shrna Inhibits The Growth Of Pancreatic Adenocarcinoma Xenografts, Sophie J. Deharvengt, Dan Tse, Olga Sideleva, Caitlin Mcgarry, Jason R. Gunn, Daniel S. Longnecker, Catherine Carriere, Radu V. Stan May 2012

Pv1 Down-Regulation Via Shrna Inhibits The Growth Of Pancreatic Adenocarcinoma Xenografts, Sophie J. Deharvengt, Dan Tse, Olga Sideleva, Caitlin Mcgarry, Jason R. Gunn, Daniel S. Longnecker, Catherine Carriere, Radu V. Stan

Dartmouth Scholarship

PV1 is an endothelial-specific protein with structural roles in the formation of diaphragms in endothelial cells of normal vessels. PV1 is also highly expressed on endothelial cells of many solid tumours. On the basis of in vitro data, PV1 is thought to actively participate in angiogenesis. To test whether or not PV1 has a function in tumour angiogenesis and in tumour growth in vivo, we have treated pancreatic tumour-bearing mice by single-dose intratumoural delivery of lentiviruses encoding for two different shRNAs targeting murine PV1. We find that PV1 down-regulation by shRNAs inhibits the growth of established tumours derived from two …


Heterogeneity In Mitochondrial Morphology And Membrane Potential Is Independent Of The Nuclear Division Cycle In Multinucleate Fungal Cells, John P. Gerstenberger, Patricia Occhipinti, Amy S. Gladfelter Jan 2012

Heterogeneity In Mitochondrial Morphology And Membrane Potential Is Independent Of The Nuclear Division Cycle In Multinucleate Fungal Cells, John P. Gerstenberger, Patricia Occhipinti, Amy S. Gladfelter

Dartmouth Scholarship

In the multinucleate filamentous fungus Ashbya gossypii, nuclei divide asynchronously in a common cytoplasm. We hypothesize that the division cycle machinery has a limited zone of influence in the cytoplasm to promote nuclear autonomy. Mitochondria in cultured mammalian cells undergo cell cycle-specific changes in morphology and membrane potential and therefore can serve as a reporter of the cell cycle state of the cytoplasm. To evaluate if the cell cycle state of nuclei in A. gossypii can influ


Roles Of Ras1 Membrane Localization During Candida Albicans Hyphal Growth And Farnesol Response, Amy E. Piispanen, Ophelie Bonnefoi, Sarah Carden, Aurelie Deveau Sep 2011

Roles Of Ras1 Membrane Localization During Candida Albicans Hyphal Growth And Farnesol Response, Amy E. Piispanen, Ophelie Bonnefoi, Sarah Carden, Aurelie Deveau

Dartmouth Scholarship

Many Ras GTPases localize to membranes via C-terminal farnesylation and palmitoylation, and localization regulates function. In Candida albicans, a fungal pathogen of humans, Ras1 links environmental cues to morphogenesis. Here, we report the localization and membrane dynamics of Ras1, and we characterize the roles of conserved C-terminal cysteine residues, C287 and C288, which are predicted sites of palmitoylation and farnesylation, respectively. GFP-Ras1 is localized uniformly to plasma membranes in both yeast and hyphae, yet Ras1 plasma membrane mobility was reduced in hyphae compared to that in yeast. Ras1-C288S was mislocalized to the cytoplasm and could not support hyphal development. …


Variations In Mre11/Rad50/Nbs1 Status And Dna Damage-Induced S-Phase Arrest In The Cell Lines Of The Nci60 Panel, Kristen M. K. Garner, Alan Eastman May 2011

Variations In Mre11/Rad50/Nbs1 Status And Dna Damage-Induced S-Phase Arrest In The Cell Lines Of The Nci60 Panel, Kristen M. K. Garner, Alan Eastman

Dartmouth Scholarship

The Mre11/Rad50/Nbs1 (MRN) complex is a regulator of cell cycle checkpoints and DNA repair. Defects in MRN can lead to defective S-phase arrest when cells are damaged. Such defects may elicit sensitivity to selected drugs providing a chemical synthetic lethal interaction that could be used to target therapy to tumors with these defects. The goal of this study was to identify these defects in the NCI60 panel of cell lines and identify compounds that might elicit selective cytotoxicity.


Temporal Regulation Of The Muscle Gene Cascade By Macho1 And Tbx6 Transcription Factors In Ciona Intestinalis, Jamie E. Kugler, Stefan Gazdoiu, Izumi Oda-Ishii, Yale J. Passamaneck, Albert J. Erives, Anna Di Gregorio Apr 2010

Temporal Regulation Of The Muscle Gene Cascade By Macho1 And Tbx6 Transcription Factors In Ciona Intestinalis, Jamie E. Kugler, Stefan Gazdoiu, Izumi Oda-Ishii, Yale J. Passamaneck, Albert J. Erives, Anna Di Gregorio

Dartmouth Scholarship

For over a century, muscle formation in the ascidian embryo has been representative of 'mosaic' development. The molecular basis of muscle-fate predetermination has been partly elucidated with the discovery of Macho1, a maternal zinc-finger transcription factor necessary and sufficient for primary muscle development, and of its transcriptional intermediaries Tbx6b and Tbx6c. However, the molecular mechanisms by which the maternal information is decoded by cis-regulatory modules (CRMs) associated with muscle transcription factor and structural genes, and the ways by which a seamless transition from maternal to zygotic transcription is ensured, are still mostly unclear. By combining misexpression assays with CRM analyses, …


Decreased Replication Origin Activity In Temporal Transition Regions, Zeqiang Guan, Christina M. Hughes, Settapong Kosiyatrakul, Paolo Norio, Ranjan Sen, Steven Fiering Nov 2009

Decreased Replication Origin Activity In Temporal Transition Regions, Zeqiang Guan, Christina M. Hughes, Settapong Kosiyatrakul, Paolo Norio, Ranjan Sen, Steven Fiering

Dartmouth Scholarship

In the mammalian genome, early- and late-replicating domains are often separated by temporal transition regions (TTRs) with novel properties and unknown functions. We identified a TTR in the mouse immunoglobulin heavy chain (Igh) locus, which contains replication origins that are silent in embryonic stem cells but activated during B cell development. To investigate which factors contribute to origin activation during B cell development, we systematically modified the genetic and epigenetic status of the endogenous Igh TTR and used a single-molecule approach to analyze DNA replication. Introduction of a transcription unit into the Igh TTR, activation of gene transcription, …


Wnt Pathway Reprogramming During Human Embryonal Carcinoma Differentiation And Potential For Therapeutic Targeting, Grace E. Snow, Allison C. Kasper, Alexander M. Busch, Elisabeth Schwarz, Katherine E. Ewings, Thomas Bee, Michael J. Spinella, Ethan Dmitrovsky, Sarah J. Freemantle Oct 2009

Wnt Pathway Reprogramming During Human Embryonal Carcinoma Differentiation And Potential For Therapeutic Targeting, Grace E. Snow, Allison C. Kasper, Alexander M. Busch, Elisabeth Schwarz, Katherine E. Ewings, Thomas Bee, Michael J. Spinella, Ethan Dmitrovsky, Sarah J. Freemantle

Dartmouth Scholarship

Testicular germ cell tumors (TGCTs) are classified as seminonas or non-seminomas of which a major subset is embryonal carcinoma (EC) that can differentiate into diverse tissues. The pluripotent nature of human ECs resembles that of embryonic stem (ES) cells. Many Wnt signalling species are regulated during differentiation of TGCT-derived EC cells. This study comprehensively investigated expression profiles of Wnt signalling components regulated during induced differentiation of EC cells and explored the role of key components in maintaining pluripotency.


Genome-Wide Transcriptional Profiling Of The Cyclic Amp-Dependent Signaling Pathway During Morphogenic Transitions Of Candida Albicans, Yong-Sun Bahn, Matthew Molenda, Janet F. Staab, Courtney A. Lyman, Laura J. Gordon, Paula Sundstrom Dec 2007

Genome-Wide Transcriptional Profiling Of The Cyclic Amp-Dependent Signaling Pathway During Morphogenic Transitions Of Candida Albicans, Yong-Sun Bahn, Matthew Molenda, Janet F. Staab, Courtney A. Lyman, Laura J. Gordon, Paula Sundstrom

Dartmouth Scholarship

Candida albicans is an opportunistic human fungal pathogen that causes systemic candidiasis as well as superficial mucosal candidiasis. In response to the host environment, C. albicans transitions between yeast and hyphal forms. In particular, hyphal growth is important in facilitating adhesion and invasion of host tissues, concomitant with the expression of various hypha-specific virulence factors. In previous work, we showed that the cyclic AMP (cAMP) signaling pathway plays a crucial role in morphogenic transitions and virulence of C. albicans by studying genes encoding adenylate cyclase-associated protein (CAP1) and high-affinity phosphodiesterase (PDE2) (Y. S. Bahn, J. Staab, and P. Sundstrom, Mol. …


Role Of Actin Cytoskeletal Dynamics In Activation Of The Cyclic Amp Pathway And Hwp1 Gene Expression In Candida Albicans, Michael J. Wolyniak, Paula Sundstrom Oct 2007

Role Of Actin Cytoskeletal Dynamics In Activation Of The Cyclic Amp Pathway And Hwp1 Gene Expression In Candida Albicans, Michael J. Wolyniak, Paula Sundstrom

Dartmouth Scholarship

Changes in gene expression during reversible bud-hypha transitions of the opportunistic fungal pathogen Candida albicans permit adaptation to environmental conditions that are critical for proliferation in host tissues. Our previous work has shown that the hypha-specific adhesin gene HWP1 is up-regulated by the cyclic AMP (cAMP) signaling pathway. However, little is known about the potential influences of determinants of cell morphology on HWP1 gene expression. We found that blocking hypha formation with cytochalasin A, which destabilizes actin filaments, and with latrunculin A, which sequesters actin monomers, led to a loss of HWP1 gene expression. In contrast, high levels of HWP1 …


A 368-Base-Pair Cis-Acting Hwp1 Promoter Region, Hcr, Of Candida Albicans Confers Hypha-Specific Gene Regulation And Binds Architectural Transcription Factors Nhp6 And Gcf1p, Samin Kim, Michael J. Wolyniak, Janet F. Staab, Paula Sundstrom Apr 2007

A 368-Base-Pair Cis-Acting Hwp1 Promoter Region, Hcr, Of Candida Albicans Confers Hypha-Specific Gene Regulation And Binds Architectural Transcription Factors Nhp6 And Gcf1p, Samin Kim, Michael J. Wolyniak, Janet F. Staab, Paula Sundstrom

Dartmouth Scholarship

To elucidate the molecular mechanisms controlling the expression of the hypha-specific adhesin gene HWP1 of Candida albicans, its promoter was dissected and analyzed using a green fluorescent protein reporter gene. A 368-bp region, the HWP1 control region (HCR), was critical for activation under hypha-inducing conditions and conferred developmental regulation to a heterologous ENO1 promoter. A more distal region of the promoter served to amplify the level of promoter activation. Using gel mobility shift assays, a 249-bp subregion of HCR, HCRa, was found to bind at least four proteins from crude extracts of yeasts and hyphae with differing binding patterns dependent …


Limited Functional Redundancy And Oscillation Of Cyclins In Multinucleated Ashbya Gossypii Fungal Cells, A. Katrin Hungerbuehler, Peter Philippsen, Amy S. Gladfelter Nov 2006

Limited Functional Redundancy And Oscillation Of Cyclins In Multinucleated Ashbya Gossypii Fungal Cells, A. Katrin Hungerbuehler, Peter Philippsen, Amy S. Gladfelter

Dartmouth Scholarship

Cyclin protein behavior has not been systematically investigated in multinucleated cells with asynchronous mitoses. Cyclins are canonical oscillating cell cycle proteins, but it is unclear how fluctuating protein gradients can be established in multinucleated cells where nuclei in different stages of the division cycle share the cytoplasm. Previous work in A. gossypii, a filamentous fungus in which nuclei divide asynchronously in a common cytoplasm, demonstrated that one G1 and one B-type cyclin do not fluctuate in abundance across the division cycle. We have undertaken a comprehensive analysis of all G1 and B-type cyclins in A. gossypii to determine whether …


Genetic And Molecular Analysis Of Phytochromes From The Filamentous Fungus Neurospora Crassa, Allan C. Froehlich, Bosl Noh, Richard D. Vierstra, Jennifer Loros, Jay C. Dunlap Dec 2005

Genetic And Molecular Analysis Of Phytochromes From The Filamentous Fungus Neurospora Crassa, Allan C. Froehlich, Bosl Noh, Richard D. Vierstra, Jennifer Loros, Jay C. Dunlap

Dartmouth Scholarship

Phytochromes (Phys) comprise a superfamily of red-/far-red-light-sensing proteins. Whereas higher-plant Phys that control numerous growth and developmental processes have been well described, the biochemical characteristics and functions of the microbial forms are largely unknown. Here, we describe analyses of the expression, regulation, and activities of two Phys in the filamentous fungus Neurospora crassa. In addition to containing the signature N-terminal domain predicted to covalently associate with a bilin chromophore, PHY-1 and PHY-2 contain C-terminal histidine kinase and response regulator motifs, implying that they function as hybrid two-component sensor kinases activated by light. A bacterially expressed N-terminal fragment of PHY-2 covalently …


Arsenite Regulates Cystic Fibrosis Transmem­Brane Conductance Regulator And P-Glycoprotein: Evidence Of Pathway Independence, Rangan Maitra, Joshua Hamilton Jan 2005

Arsenite Regulates Cystic Fibrosis Transmem­Brane Conductance Regulator And P-Glycoprotein: Evidence Of Pathway Independence, Rangan Maitra, Joshua Hamilton

Dartmouth Scholarship

In the past, people have argued for and against the theory of reciprocal regulation of the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) and P-glycoprotein (Pgp). Data have indicated that this may occur in vitro during drug-induced selection of cells, and in vivo during development. Much of this debate has been caused by a severe lack of mechanistic details involved in such regulation. Our past data indicate that certain Pgp modulators can affect CFTR expression and function. The goal of this study was to investigate the effects of trivalent arsenic (arsenite), a known transcriptional activator of Pgp, on CFTR expression. In …


A Thyroid Hormone-Regulated Gene In Xenopus Laevis Encodes A Type Iii Iodothyronine 5-Deiodinase., Donald L. St Germain, Robert Schwartzman, Walburga Croteau, Akira Kanamori, Zhou Wang, Donald D. Brown, Valerie Galton Aug 1994

A Thyroid Hormone-Regulated Gene In Xenopus Laevis Encodes A Type Iii Iodothyronine 5-Deiodinase., Donald L. St Germain, Robert Schwartzman, Walburga Croteau, Akira Kanamori, Zhou Wang, Donald D. Brown, Valerie Galton

Dartmouth Scholarship

The type III iodothyronine 5-deiodinase metabolizes thyroxine and 3,5,3'-triiodothyronine to inactive metabolites by catalyzing the removal of iodine from the inner ring. The enzyme is expressed in a tissue-specific pattern during particular stages of development in amphibia, birds, and mammals. Recently, a PCR-based subtractive hybridization technique has been used to isolate cDNAs prepared from Xenopus laevis tadpole tail mRNA that represent genes upregulated by thyroid hormone during metamorphosis. Sequence analysis of one of these cDNAs (XL-15) revealed regions of homology to the mRNA encoding the rat type I (outer ring) 5'-deiodinase, including a conserved UGA codon that encodes selenocysteine in …


The Homeo Domain Of A Murine Protein Binds 5' To Its Own Homeo Box., Abraham Fainsod, Leonard D. Bogarad, Tarmo Ruusala, Martin Lubin Dec 1986

The Homeo Domain Of A Murine Protein Binds 5' To Its Own Homeo Box., Abraham Fainsod, Leonard D. Bogarad, Tarmo Ruusala, Martin Lubin

Dartmouth Scholarship

Nuclear protein extracts from day 12.5 mouse embryos were used to study protein binding to DNA sequences 5' of the Hox 1.5 homeo box. Embryos of this developmental stage are known to express this gene. DNA binding protein blotting and retardation gel techniques show that murine embryonic nuclear proteins specifically bind a 753-base pair (bp) DNA fragment from the region upstream of the Hox 1.5 homeo box. A fusion protein containing the Hox 1.5 homeo domain constructed in lambda gt11 also binds the same 753-bp DNA fragment. Specific binding of the fusion protein to the upstream DNA fragment shows that …