Open Access. Powered by Scholars. Published by Universities.®

Cell and Developmental Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

PDF

Virginia Commonwealth University

Theses and Dissertations

Breast Cancer

Articles 1 - 2 of 2

Full-Text Articles in Cell and Developmental Biology

Regulatory T Cells Promote Breast Cancer Progression Through Inhibiting Classical Activation Of Macrophages, Nicholas M. Clark Jan 2019

Regulatory T Cells Promote Breast Cancer Progression Through Inhibiting Classical Activation Of Macrophages, Nicholas M. Clark

Theses and Dissertations

Transient ablation of regulatory T cells has been shown to be effective at hindering tumor growth and metastasis in murine breast cancer model. Based on our lab’s previous work, we have demonstrated that NK cells and CD8+ cytotoxic T cells were not required for the protective effect of Treg cell ablation. However, we also reported that CD4+ helper T cells and IFN-γ were required for the protective effect of Treg cell ablation. Furthermore, we observed that CD11B+ cells responded to Treg ablation therapy by up-regulating target genes of IFN-γ. Therefore, this study aimed to investigate the connection between the myeloid …


Immunotherapy Of Cancer: Reprogramming Tumor/Immune Cellular Crosstalk To Improve Anti-Tumor Efficacy, Kyle K. Payne Jan 2015

Immunotherapy Of Cancer: Reprogramming Tumor/Immune Cellular Crosstalk To Improve Anti-Tumor Efficacy, Kyle K. Payne

Theses and Dissertations

Immunotherapy of cancer has been shown to be promising in prolonging patient survival. However, complete elimination of cancer and life-long relapse-free survival remain to be major challenge for anti-cancer therapeutics. We have previously reported that ex vivo reprogramming of tumor-sensitized immune cells by bryostatin 1/ionomycin (B/I) and the gamma-chain (γ-c) cytokines IL-2, IL-7, and IL-15 resulted in the generation of memory T cells as well as CD25+ NKT cells and CD25+ NK cells. Adoptive cellular therapy (ACT) utilizing these reprogrammed immune cells protected FVBN202 mice from tumor challenge, and overcame the suppressive functions of myeloid-derived suppressor cells (MDSCs). We then …