Open Access. Powered by Scholars. Published by Universities.®

Cell and Developmental Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Plant Sciences

External Link

Sieve element

Publication Year

Articles 1 - 3 of 3

Full-Text Articles in Cell and Developmental Biology

Legume Phylogeny And The Evolution Of A Unique Contractile Apparatus That Regulates Phloem Transport, Winfried Peters, Claudia Hanakam, Dietmar Haffer, Aart Van Bel, Michael Knoblauch Mar 2010

Legume Phylogeny And The Evolution Of A Unique Contractile Apparatus That Regulates Phloem Transport, Winfried Peters, Claudia Hanakam, Dietmar Haffer, Aart Van Bel, Michael Knoblauch

Winfried S. Peters

Protein bodies called forisomes undergo Ca2+-dependent deformations to occlude sieve tubes reversibly, providing a unique regulatory mechanism of phloem transport. Because forisomes are known exclusively from the Papilionoideae (Leguminosae), the evolution of forisome function may have played a role in the rapid radiation of this huge taxon. The unexpected discovery of a papilionoid species lacking forisomes led us to evaluate a representative set of species covering 33 of the 36 legume tribes traditionally recognized. We found forisomes in Papilionoideae but not in Caesalpinioideae and Mimosoideae. Forisomes were absent from several species of the papilionoid tribe Galegeae. Forisomes with tail-like protrusions …


Tailed Forisomes Of Canavalia Gladiata: A New Model To Study Ca2+-Driven Protein Contractility, Winfried Peters, Michael Knoblauch, Stephen Warmann, Reinhard Schnetter, Amy Shen, William Pickard Jun 2007

Tailed Forisomes Of Canavalia Gladiata: A New Model To Study Ca2+-Driven Protein Contractility, Winfried Peters, Michael Knoblauch, Stephen Warmann, Reinhard Schnetter, Amy Shen, William Pickard

Winfried S. Peters

Background and Aims Forisomes are Ca2+-dependent contractile protein bodies that form reversible plugs in sieve tubes of faboid legumes. Previous work employed Vicia faba forisomes, a not entirely unproblematic experimental system. The aim of this study was to seek to establish a superior model to study these intriguing actuators.
Methods Existing isolation procedures were modified to study the exceptionally large, tailed forisomes of Canavalia gladiata by differential interference contrast microscopy in vitro. To analyse contraction/expansion kinetics quantitatively, a geometric model was devised which enabled the computation of time-courses of derived parameters such as forisome volume from simple parameters readily determined …


Forisomes, A Novel Type Of Ca2+-Dependent Contractile Protein Motor [Review Article], Michael Knoblauch, Winfried Peters Apr 2004

Forisomes, A Novel Type Of Ca2+-Dependent Contractile Protein Motor [Review Article], Michael Knoblauch, Winfried Peters

Winfried S. Peters

This paper has no abstract; this is the first paragraph. Motility of cell components in both animal and plant cells is mostly based on the movement of motor proteins along actin filaments or microtubules [Boal, 2002]. The dominance of ATP hydrolysis as the energy source for such movements is so complete, that modern textbooks define “motor proteins” as nucleoside triphosphate-dependent actuators [e.g., Alberts et al., 2002]. In only one known case, a reversible mechanism of cell motility is driven by the interaction of Ca2+ and the responsive protein(s). Some sessile ciliates control the effective length of their stalk by means …