Open Access. Powered by Scholars. Published by Universities.®

Cell and Developmental Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Cell and Developmental Biology

Discovery Of Sex Differences In Response To P53 Loss And Gain-Of-Function In Glioblastoma, Nathan Cuyle Rockwell Aug 2021

Discovery Of Sex Differences In Response To P53 Loss And Gain-Of-Function In Glioblastoma, Nathan Cuyle Rockwell

Arts & Sciences Electronic Theses and Dissertations

The tumor suppressor TP53 (p53) is the most frequently mutated gene in cancer and among the most mutated genes in brain cancer. Functionally, p53 is a transcription factor that, when activated by an array of stress stimuli, regulates a complex transcriptional program that contributes to a variety of antiproliferative pathways. The loss of p53 function (LOF), either through mutation, deletion, or inhibition by alterations in the proteins that regulate p53, removes an essential barrier to the unfettered proliferation and genomic instability that drive transformation. Unlike most tumor suppressors, many p53 mutations are missense mutations that lead to stable expression of …


Exploring The Intrinsic And Extrinsic Factors That Regulate Breast Cancer Cell Dormancy, Qihao Ren Aug 2021

Exploring The Intrinsic And Extrinsic Factors That Regulate Breast Cancer Cell Dormancy, Qihao Ren

Arts & Sciences Electronic Theses and Dissertations

Breast cancer can recur in patients months to decades after initial diagnosis and treatment. There is mounting evidence that dormant breast disseminated tumor cells (DTCs) exist in distant organs, whose reactivation results in cancer recurrence. However, the mechanisms that control tumor cell dormancy remain poorly understood, making it difficult to predict which patients will recur and develop cancer recurrence. Unfortunately, the extreme rarity of dormant DTCs has been the major obstacle to their study. To overcome this challenge, we developed an efficient system to isolate and study rare dormant tumor cells from metastatic organs. Using this system and single cell …


Contribution Of Tgf-B Signaling To The Pathogenesis Of Myeloproliferative Neoplasms, Juo-Chin Yao Jan 2021

Contribution Of Tgf-B Signaling To The Pathogenesis Of Myeloproliferative Neoplasms, Juo-Chin Yao

Arts & Sciences Electronic Theses and Dissertations

TGF-b expression is increased in most cases of myeloproliferative neoplasms (MPNs); however, its contribution to disease pathogenesis is not well understood. Here, we explore two specific hypotheses. First, we hypothesize that increased TGF-b signaling in mesenchymal stromal cells contributes to the development of myelofibrosis. Second, we hypothesize that Jak2 mutated hematopoietic stem cells (HSCs) are resistant to the growth suppressive effect of TGF-b, conferring a fitness advantage that contributes to their expansion in MPNs and clonal hematopoiesis. To test the first hypothesis, we abrogated TGF-b signaling in mesenchymal stem/progenitor cells by deleting Tgfbr2 using a doxycycline-repressible Osterix-Cre transgene (Osx-Cre), which …


Targeting The Phgdh-Mtor Metabolic Axis In Osteosarcoma, Richa Rathore Jan 2021

Targeting The Phgdh-Mtor Metabolic Axis In Osteosarcoma, Richa Rathore

Arts & Sciences Electronic Theses and Dissertations

Altering cellular energy metabolism has been highlighted as one of the emerging hallmarks of cancer. The reprogramming of bioenergetic pathways towards enhanced glycolysis, rather than the mitochondrial oxidative phosphorylation indicative of normal cells, results in increased biomass production and is associated with the activation of various oncogenes. The increased or decreased expression of key metabolic enzymes has been identified as a potential family of biomarkers that could serve as the targets for novel metabolic-based therapies in cancer.

The serine, glycine, and one-carbon (SGOC) metabolism pathway consists of a series of enzymes and metabolites that drive protein and lipid production, enhanced …


Investigating Biological Mechanisms Of Radiation Resistance In Advanced Stage Cervical Cancer, Fiona Ruiz Dec 2019

Investigating Biological Mechanisms Of Radiation Resistance In Advanced Stage Cervical Cancer, Fiona Ruiz

Arts & Sciences Electronic Theses and Dissertations

The current standard of care treatment for locally advanced cervical cancer is curative intent pelvic radiation with concurrently administered platinum chemotherapy (CRT). This treatment strategy is effective for many patients, but 33-50% of patients treated with CRT develop disease recurrence. Metastatic and recurrent cervical cancer is an incurable condition, and many of the currently available treatments are associated with significant morbidity and mortality. Identifying these patients upfront is a challenge that clinicians face when developing treatment strategies. Previous studies used to catalog the genomic and transcriptomic landscape of cervical cancer lacked high quality corresponding clinical follow up data for patients, …


T Cell Immunity In Pancreatic Cancer Is Undermined By Dendritic Cell Dysfunction, Samarth Hegde Dec 2019

T Cell Immunity In Pancreatic Cancer Is Undermined By Dendritic Cell Dysfunction, Samarth Hegde

Arts & Sciences Electronic Theses and Dissertations

Pancreatic cancer carries a dismal prognosis, and desperately needs viable therapeutic interventions beyond chemo-radiation. T cell-dependent immunotherapies have shown great promise in several tumor types, but have not been effective for the vast majority of pancreatic cancer patients. This is, in part, due to our limited understanding of how antigenicity of pancreatic lesions is recognized, and how adaptive immunity is overcome in this disease. We sought to study tumor-immune interactions and identify mechanisms for this immune-failure using several spontaneous and unperturbed mouse models of pancreatic adenocarcinoma. We found that early pancreatic lesions fail to elicit tumor-limiting CD4+ TH1 and CD8+ …


Exploring Infant Leukemia Through Exome Sequencing And An In Vitro Model Of Hematopoietic Development, Mark Cannon Valentine May 2019

Exploring Infant Leukemia Through Exome Sequencing And An In Vitro Model Of Hematopoietic Development, Mark Cannon Valentine

Arts & Sciences Electronic Theses and Dissertations

Cancer is a heterogeneous disease with myriad causes and outcomes. Many of the cancers that occur in adult populations have become increasingly well characterized with the advent of affordable high-throughput sequencing. These studies have revealed that cancer is largely a disease of somatic mutation in the adult population. In strong contrast to this, childhood cancers have an exceedingly low rate of somatic mutation. At the extreme end of this spectrum is Infant Leukemia (IL). Sequencing of IL has revealed that these tumors frequently have one or fewer somatic SNP. In the absence of a somatic explanation for IL, many other …


Tumors Interrupt Irf8-Mediated Dendritic Cell Development To Overcome Immune Surveillance, Melissa Ann Meyer May 2018

Tumors Interrupt Irf8-Mediated Dendritic Cell Development To Overcome Immune Surveillance, Melissa Ann Meyer

Arts & Sciences Electronic Theses and Dissertations

Tumors employ multiple mechanisms to evade immune surveillance. One mechanism is tumor-induced myelopoiesis, which expands immune suppressive granulocytes and monocytes to create a protective tumor niche shielding even antigenic tumors. As myeloid cells and immune-stimulatory conventional dendritic cells (cDCs) are derived from the same progenitors, it is logical that tumor-induced myelopoiesis might also impact cDC development. The cDC subset cDC1 is marked by CD141 in humans and CD103 or CD8α in mice. cDC1s act by cross presenting antigen and activating CD8+ T cells. Given these functions, CD103+ cDC1s can support anti-tumor CD8+ T cell responses. However, CD103+ cDC1 numbers are …