Open Access. Powered by Scholars. Published by Universities.®

Cell and Developmental Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Cell and Developmental Biology

The Investigation Of Novel Bovine Oocyte-Specific Long Non-Coding Rnas And Their Roles In Oocyte Maturation And Early Embryonic Development, Jaelyn Zoe Current Jan 2023

The Investigation Of Novel Bovine Oocyte-Specific Long Non-Coding Rnas And Their Roles In Oocyte Maturation And Early Embryonic Development, Jaelyn Zoe Current

Graduate Theses, Dissertations, and Problem Reports

Early embryonic loss is a significant factor in livestock species' infertility, resulting in an economic deficit. In cattle, the in vivo fertilization rate is ~90%, with an average calving rate of about 55%, indicating an embryonic-fetal mortality rate of roughly 35%. Further, 70-80% of total embryonic loss in cattle occurs during the first three weeks after insemination, particularly between days 7-16. Growing evidence indicates that the oocyte plays an active role in regulating critical aspects of the reproductive process required for successful fertilization, embryo development, and pregnancy. However, defining oocyte quality remains enigmatic. Recently, many have abandoned the notion that …


Elucidation Of The Role Of Agouti-Signaling Protein Throughout Folliculogenesis And Early Embryonic Development In Cattle, Heather L. Chaney Jan 2023

Elucidation Of The Role Of Agouti-Signaling Protein Throughout Folliculogenesis And Early Embryonic Development In Cattle, Heather L. Chaney

Graduate Theses, Dissertations, and Problem Reports

The oocyte expresses certain genes during folliculogenesis to regulate the acquisition of oocyte competence. Oocyte competence, which refers to the presence of imperative molecular factors in the oocyte that are critical for high oocyte quality, is directly related to the ability of the oocyte to result in a successful pregnancy following fertilization. Over the past few decades, the development and optimization of assisted reproductive technologies, particularly in vitrofertilization, have enabled the beef and dairy industries to advance cattle genetics and productivity. However, only approximately 40% of bovine embryos will develop to the blastocyst stage in vitro. In addition, bovine embryos …


Cell Signaling And Stress Response In The Yeast Saccharomyces Cerevisiae: A Study Of Snf1, Scott E. Arbet Ii Jan 2023

Cell Signaling And Stress Response In The Yeast Saccharomyces Cerevisiae: A Study Of Snf1, Scott E. Arbet Ii

Graduate Theses, Dissertations, and Problem Reports

Saccharomyces cerevisiae are yeast that are unicellular eukaryotic organisms that are well studied as a model organism for understanding fundamental cellular processes. The ability of yeast to sense nutrient availability is crucial for their survival, growth, and reproduction. Yeast cells use various mechanisms to sense and respond to nutrient availability, including transporter-mediated uptake, receptor-mediated signaling, and sensing of metabolites. The subcellular localization of nutrient-sensing components is crucial for yeast function in nutrient sensing and signaling. Protein complexes, such as the AMP-activated protein kinase (AMPK) pathway, in nutrient sensing and response, as well as the downstream effects of these pathways …


Getting To The Root Cause: The Genetic Underpinnings Of Root System Architecture And Rhizodeposition In Sorghum, Farren Smith Jan 2022

Getting To The Root Cause: The Genetic Underpinnings Of Root System Architecture And Rhizodeposition In Sorghum, Farren Smith

Graduate Theses, Dissertations, and Problem Reports

Plants are some of the most diverse organisms on earth, consisting of more than 350,000 different species. To understand the underlying processes that contributed to plant diversification, it is fundamental to identify the genetic and genomic components that facilitated various adaptations over evolutionary history. Most studies to date have focused on the underlying controls of above-ground traits such as grain and vegetation; however, little is known about the “hidden half” of plants. Root systems comprise half of the total plant structure and provide vital functions such as anchorage, resource acquisition, and storage of energy reserves. The execution of these key …


The Exploration Of Nanotoxicological Copper And Interspecific Saccharomyces Hybrids, Matthew Joseph Winans Phd Jan 2020

The Exploration Of Nanotoxicological Copper And Interspecific Saccharomyces Hybrids, Matthew Joseph Winans Phd

Graduate Theses, Dissertations, and Problem Reports

Nanotechnology takes advantage of cellular biology’s natural nanoscale operations by interacting with biomolecules differently than soluble or bulk materials, often altering normal cellular processes such as metabolism or growth. To gain a better understanding of how copper nanoparticles hybridized on cellulose fibers called carboxymethyl cellulose (CMC) affected growth of Saccharomyces cerevisiae, the mechanisms of toxicity were explored. Multiple methodologies covering genetics, proteomics, metallomics, and metabolomics were used during this investigation. The work that lead to this dissertation discovered that these cellulosic copper nanoparticles had a unique toxicity compared to copper. Further investigation suggested a possible ionic or molecular mimicry …


Evidence Of Y Chromosome Long Non-Coding Rnas Involved In The Radiation Response Of Male Non-Small Cell Lung Cancer Cells, Tayvia Brownmiller Jan 2020

Evidence Of Y Chromosome Long Non-Coding Rnas Involved In The Radiation Response Of Male Non-Small Cell Lung Cancer Cells, Tayvia Brownmiller

Graduate Theses, Dissertations, and Problem Reports

Non-small cell lung cancer (NSCLC) is the number one cause of cancer related mortality in the United States and worldwide. Advanced and therapeutically resistant lung tumors contribute to the high rate of mortality from NSCLC, therefore there is a need for new methods of diagnosing and treating this disease. Long non-coding RNAs (lncRNAs) have been shown to be a crucial component of human molecular biology, regulating nearly every cellular pathway from chromatin condensation to transcription and translation. Furthermore, many lncRNAs have been classified as oncogenes or tumor suppressors, highlighting the various molecular mechanisms they are involved in regarding the formation …