Open Access. Powered by Scholars. Published by Universities.®

Cell and Developmental Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences

Theses/Dissertations

2017

Institution
Keyword
Publication

Articles 1 - 30 of 72

Full-Text Articles in Cell and Developmental Biology

Evaluation Of Extracellular Matrix Composition And Rheology As Determinants Of Growth, Invasion, And Response To Photodynamic Therapy In 3d Cell Culture Models Of Pancreatic Ductal Adenocarcinoma, Gwendolyn M. Cramer Dec 2017

Evaluation Of Extracellular Matrix Composition And Rheology As Determinants Of Growth, Invasion, And Response To Photodynamic Therapy In 3d Cell Culture Models Of Pancreatic Ductal Adenocarcinoma, Gwendolyn M. Cramer

Graduate Doctoral Dissertations

Pancreatic ductal adenocarcinoma (PDAC) is a notoriously lethal disease characterized by prominent stromal involvement, which plays complex roles in regulating tumor growth and therapeutic response. The extracellular matrix (ECM)-rich stroma has been implicated as a barrier to drug penetration, although stromal depletion strategies have had mixed clinical success. It remains less clear how biophysical interactions with the ECM regulate invasive progression and susceptibilities to specific therapies. Here, an integrative approach combining 3D cell culture and quantitative imaging techniques is used to evaluate invasive behavior and motility as determinants of response to classical chemotherapy and photodynamic therapy (PDT), in which light …


The Role Of Yes-Associated Protein 1 In Ovarian Physiology And Pathology, Xiangmin Lv Dec 2017

The Role Of Yes-Associated Protein 1 In Ovarian Physiology And Pathology, Xiangmin Lv

Theses & Dissertations

Ovarian granulosa cells are the major somatic components of the ovarian follicle. Proper proliferation and differentiation of ovarian granulosa cells are essential for successful follicle development. Accumulating evidence indicates that the Hippo-YAP signaling pathway plays critical roles in both development and tumorigenesis of several organs. The present study aims to investigate the role of Yes-associated protein 1 (YAP) in ovarian granulosa cell proliferation, differentiation, and malignant transformation. At first, we found that nuclear YAP (active) was highly expressed in proliferative granulosa cells, whereas cytoplasmic YAP (inactive) was detected mainly in terminally-differentiated luteal cells. Further studies suggested that endogenous YAP activity …


Identifying The Role Of Janus Kinase 1 In Mammary Gland Development And Breast Cancer, Barbara Swenson Dec 2017

Identifying The Role Of Janus Kinase 1 In Mammary Gland Development And Breast Cancer, Barbara Swenson

Theses & Dissertations

The development of the postnatal mammary gland is tightly controlled by peptide hormones and cytokines. The signaling of these extracellular ligands through their corresponding receptors rely on Janus Kinases (JAKs) that activate downstream Signal Transducers and Activators of Transcription (STATs). The JAK/STAT signaling pathway is crucial for processes such as growth, proliferation, and cell survival of the epithelial tissue, but also for the breakdown and remodeling of the mammary gland via IL-6 class inflammatory cytokines (e.g. LIF and OSM). JAK1 and JAK2, which are expressed in the mammary gland, are thought to have redundant functions. However, our previous studies demonstrated …


Dopamine Levels In The Brain Of Rat Models Of Human Rheumatoid Arthritis, Amelia Stinson Dec 2017

Dopamine Levels In The Brain Of Rat Models Of Human Rheumatoid Arthritis, Amelia Stinson

Theses & Dissertations

Research Focus. Rheumatoid arthritis (RA) is a chronic, debilitating, autoimmune disease that causes the destruction of bone tissue and the articular structures of joints. At least 30% of RA patient populations have cognitive impairment. Acidic dopamine (DA) is the principal neuroimmunotransmitter that links the central nervous system and peripheral nervous system together. The aim of the present study was to determine the levels of DA and its two acidic metabolites: 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) in arthritic induced rats, and whether their levels vary across four different parts of the brain: amygdala (AMG), front cerebral cortex (CX), hippocampus …


Brain Energy Homeostasis And The Regulation Of N-Acetyl-Aspartate Metabolism In Development And Disease, Samantha Zaroff Dec 2017

Brain Energy Homeostasis And The Regulation Of N-Acetyl-Aspartate Metabolism In Development And Disease, Samantha Zaroff

Graduate School of Biomedical Sciences Theses and Dissertations

N-acetylaspartate (NAA) is a non-invasive clinical marker of neuronal metabolic integrity because of its strong proton magnetic resonance spectroscopy (H-MRS) peak and direct correlation with energetic integrity. Specifically, NAA is used to track the progression of neurodegenerative diseases due to the characteristic reduction of whole brain levels of NAA which occur simultaneously with reduced glucose utilization and mitochondrial dysfunction, but prior to the onset of disease specific pathology. However, NAA will also significantly increase simultaneously with energetic integrity during periods of recovery or remission in applicable disorders, such as traumatic brain injuries. Unfortunately, it remains enigmatic exactly why NAA is …


Insights Into The Therapeutic Potential Of Salt Inducible Kinase 1: A Novel Mechanism Of Metabolic Control, Randi Fitzgibbon Dec 2017

Insights Into The Therapeutic Potential Of Salt Inducible Kinase 1: A Novel Mechanism Of Metabolic Control, Randi Fitzgibbon

Dissertations & Theses (Open Access)

Salt inducible kinase 1 (SIK1) has been considered a stress-inducible kinase since it was first cloned in 1999. Continued efforts since this time have been dedicated to characterizing the structure and function of SIK1. Such research has laid the ground work for our understanding of SIK1 action and regulation in tissue and stimuli dependent manners. The fundamental findings of this dissertation continue in this tradition and include investigations of SIK1 regulatory mechanisms in skeletal muscle cells, the cellular and physiological effects of SIK1 loss of function in vitro and in vivo, and intracellular metabolic and mitochondrial regulation by this …


The Functions Of Setd5 And Mir-221 In Embryonic Stem Cell Differentiation, Tsai-Yu Chen Dec 2017

The Functions Of Setd5 And Mir-221 In Embryonic Stem Cell Differentiation, Tsai-Yu Chen

Dissertations & Theses (Open Access)

Embryonic stem cells (ESCs) are a widely used model system to study cellular differentiation because of their pluripotent characteristics, and ESC differentiation is an epigenetic process. In an effort to identify a new epigenetic factor that is required for ESC differentiation, the function of SETD5 in ESCs was studied for this thesis. Results show that SETD5 is essential for retinoic acid (RA)-induced differentiation of mouse ESCs and for RA-induced expression of critical developmental genes (e.g., Hoxa1 and Hoxa2) and neuron-related genes (e.g., Nestin and Pax6). SETD5 was upregulated during ESC differentiation. Additional results demonstrated that SETD5 bound to …


Endocytic Trafficking Of The Amyloid Precursor Protein In Rat Cortical Neurons, Sahily Reyes Dec 2017

Endocytic Trafficking Of The Amyloid Precursor Protein In Rat Cortical Neurons, Sahily Reyes

Dissertations & Theses (Open Access)

Amyloid-beta (Aβ) aggregation and deposition into extracellular plaques is a hallmark of the most common forms of dementia, including Alzheimer’s disease. The Aβ-containing plaques result from pathogenic cleavage of amyloid precursor protein (APP) by secretases resulting in intracellular production of Aβ peptides that are secreted and accumulate extracellularly. Despite considerable progress towards understanding APP processing and Aβ aggregation, the mechanisms underlying endosomal production of Aβ peptides and their secretion remain unclear. Using endosomes isolated from cultured primary neurons, we determined that the trafficking of APP from the endosomal membrane into internal vesicles of late endosome/multivesicular bodies (MVB) is dependent on …


Role Of Heat Shock Transcription Factor 1 In Ovarian Cancer Epithelial-Mesenchymal Transition And Drug Sensitivity, Chase David Powell Nov 2017

Role Of Heat Shock Transcription Factor 1 In Ovarian Cancer Epithelial-Mesenchymal Transition And Drug Sensitivity, Chase David Powell

USF Tampa Graduate Theses and Dissertations

The heat shock response (HSR) is a robust cellular reaction to mitigate protein damage from heat and other challenges to the proteome. This protective molecular program in humans is controlled by heat shock transcription factor 1 (HSF1). Activation of HSF1 leads to the induction of an array of cytoprotective genes, many of which code for chaperones. These chaperones, known as heat shock proteins (HSPs), are responsible for maintaining the functional integrity of the proteome. HSPs achieve this by promoting proper folding and assembly of nascent proteins, refolding denatured proteins, and processing for degradation proteins and aggregates which cannot be returned …


Exploring Biological Heterogeneity And Its Consequences At Tissue And Cellular Scales Through Mathematical And Computational Modeling, Romica Kerketta Sep 2017

Exploring Biological Heterogeneity And Its Consequences At Tissue And Cellular Scales Through Mathematical And Computational Modeling, Romica Kerketta

Biomedical Sciences ETDs

This dissertation explores the effects of heterogeneity across different biological scales in cancer as well as normal cells. At the tissue scale, we investigated the variability present in the tumor microenvironment and its effect on patient chemotherapeutic outcomes using a mathematical model of drug transport. We found that parameters such as tumor blood perfusion and radius of blood vessel had an impact on the tumor cytotoxicity. This indicated that the physical microenvironment of the tumor is an important regulator of the tumor response to chemotherapy. At the cellular scale, we investigated the heterogeneity present on the membrane landscape of ErbB2 …


Characterization And Function Of Islet Antigen Presenting Cells During Nod Diabetes, Stephen Thomas Ferris Aug 2017

Characterization And Function Of Islet Antigen Presenting Cells During Nod Diabetes, Stephen Thomas Ferris

Arts & Sciences Electronic Theses and Dissertations

Here we characterized the initial antigen presenting cells (APCs) within the islet of Langerhans to ascertain their identity and functional role as it pertains to autoimmune diabetes. The activation of the adaptive immune system is induced by the innate immune system, and more specifically APCs. Therefore, it is crucial to identify the APCs that are initiating T1D in order to elucidate the break in tolerance and intervene in order to inhibit progression. We have found that there is a resident macrophage that is present in all strains of mice. This islet macrophage has a distinct transcriptional profile that is unique …


Contribution Of Activating Transcription Factor 3 To Development Of Acinar-To-Ductal Cell Metaplasia, Jelena Toma Aug 2017

Contribution Of Activating Transcription Factor 3 To Development Of Acinar-To-Ductal Cell Metaplasia, Jelena Toma

Electronic Thesis and Dissertation Repository

Pancreatic ductal adenocarcinoma (PDAC) is the third leading cause of cancer death in North America. The highest risk factor for PDAC is recurrent pancreatitis. While the link between PDAC and pancreatitis is unknown, de-differentiation of acinar cells is common to both diseases. Our lab has shown that Activating Transcription Factor 3 (ATF3), a factor upregulated during pancreatic injury, contributes to the development of acinar-to-ductal cell metaplasia (ADM), a precursor phenotype of PDAC. The goal of this study was to identify how ATF3 contributes to ADM. I hypothesize that ATF3 regulates acinar gene expression promoting ADM. We observed decreased ADM development …


Using The Suprachiasmatic Nucleus As A Model System To Assess Tolerance And Withdrawal To Alcohol, Jonathan Houghton Lindsay Aug 2017

Using The Suprachiasmatic Nucleus As A Model System To Assess Tolerance And Withdrawal To Alcohol, Jonathan Houghton Lindsay

Doctoral Dissertations

Alcohol abuse induces many disorders including depression, metabolic syndrome, and sleep disturbances. The strong link between alcohol abuse and sleep problems, along with the close connection between sleep and circadian rhythms, led us to investigate ethanol’s effects on the circadian clock. Previous work has shown that acute ethanol blocks photic phase shifts in vivo and glutamatergic phase shifts in vitro. However, neural systems become tolerant to ethanol across different timeframes. Despite both ethanol tolerance and ethanol withdrawal syndrome being listed as criteria for developing alcohol use disorders, little is known about how ethanol tolerance and withdrawal induced hyperexcitability develop and …


Pharmacologic And Genetic Manipulations Of Angiotensin Signaling In Thoracic Aortic Disease Models, Andrew M. Peters Aug 2017

Pharmacologic And Genetic Manipulations Of Angiotensin Signaling In Thoracic Aortic Disease Models, Andrew M. Peters

Dissertations & Theses (Open Access)

Thoracic aortic aneurysms and dissections (TAAD) are a major cause of morbidity and mortality in patients. Many different risk factors have been associated TAAD, but hypertension is the largest risk factor. Subsets of TAAD patients have identifiable syndromic genetic diseases, yet a number of genetic non-syndromic patients have been identified. Infusion of angiotensin II into mouse models causes aortic disease through inflammation and fibrosis. An angiotensin type I receptor (AT1R) blocker (ARB) or an angiotensin converting enzyme (ACE) inhibitor (ACEi) can reverse aortic pathology in some mouse models. I set out to better understand the relationship between angiotensin and TAAD …


Chaperoning Ef Hands That Shape Calcium Response: Ncald, Hpca And S100b, Jingyi Zhang Aug 2017

Chaperoning Ef Hands That Shape Calcium Response: Ncald, Hpca And S100b, Jingyi Zhang

Graduate School of Biomedical Sciences Theses and Dissertations

All organisms have an internal clock with a defined period between repetitions of activities. The period for circadian clock in human is 24.5 hours, while in mouse and rat, it is 23.5 hours. However, all organisms are forced to be in synchronization with their environment. A major environmental force that resets the internal clock to 24 hours is light. This phenomenon is defined as “light entrainment” or “phase-setting”. It is unclear how this entrainment process occurs. Studies from this laboratory indicate a role for two neuronal calcium sensor proteins: Neurocalcin  (NCALD) and S100B. For these two genes, mRNA as …


Rna Sequencing In The Development Of Cancer-Cachexia, Thomas Allen Blackwell Aug 2017

Rna Sequencing In The Development Of Cancer-Cachexia, Thomas Allen Blackwell

Graduate Theses and Dissertations

Introduction: Cancer is a major public health problem in the U.S. and the world. In 2013 there were an estimated 1,660,290 new cases of cancer in the U.S. Cancer-Cachexia (CC) is a common effect of many cancers, and is directly responsible for 20-40% of cancer-related deaths. The mechanisms that control the development of CC are not well understood. Most investigations of CC focus on the post-cachectic state and do not examine the progression of the condition. The purpose of this study was to utilize RNA sequencing to analyze transcriptomic alterations throughout the progression of CC. Methods: Lewis Lung Carcinoma cells …


Molecular Mechanisms Of Dna Replication Initiation In Hpvs With Genetic Variations Leading To Cellular Carcinogenesis, Gulden Yilmaz Aug 2017

Molecular Mechanisms Of Dna Replication Initiation In Hpvs With Genetic Variations Leading To Cellular Carcinogenesis, Gulden Yilmaz

Graduate School of Biomedical Sciences Theses and Dissertations

Human papillomaviruses are a vast family of double-stranded DNA viruses containing non-carcinogenic and carcinogenic types, whose crucial differences remain unknown, except for the difference in the frequency of DNA replication. The human papillomavirus (HPV) E2 protein regulates the initiation of viral DNA replication and transcription. Its recognition and binding to four 12 bp palindromic sequences in the viral origin is essential for its function. Little is known about the DNA binding mechanism of the E2 protein found in HPV types that have low risk for oncogenicity (low-risk) as well as the roles of various elements of the individual binding sites. …


The Role Of The Epithelial-To-Mesenchymal Transition (Emt) In Lung Cancer Progression, David H. Peng Aug 2017

The Role Of The Epithelial-To-Mesenchymal Transition (Emt) In Lung Cancer Progression, David H. Peng

Dissertations & Theses (Open Access)

Lung cancer is the leading cause of cancer-related deaths due to conventional therapy resistance and metastatic disease, therefore understanding the mechanisms governing these biological functions is vital for improving patient survival. Approximately 30% of patients with the adenocarcinoma histologic subset of lung cancer possess an activating KRAS mutation, characterized by a lack of response to chemotherapies with a poor overall 5-year survival rate. Despite the mutational frequency, KRAS remains a challenge to pharmacologically inhibit and current drugs undergoing clinical trials that target specific downstream effector proteins of KRAS, such as MEK inhibitors, have failed to produce significant clinical benefits. Previous …


Gcn5 Impacts Fgf Signaling At Multiple Levels And Activates C-Myc Target Genes During Early Differentiation Of Embryoid Bodies, Li Wang Aug 2017

Gcn5 Impacts Fgf Signaling At Multiple Levels And Activates C-Myc Target Genes During Early Differentiation Of Embryoid Bodies, Li Wang

Dissertations & Theses (Open Access)

Precise control of gene expression during development is orchestrated by transcription factors, signaling pathways and co-regulators, with complex cross-regulatory events often occurring. Growing evidence has identified chromatin modifiers as important regulators for development as well, yet how particular chromatin modifying enzymes affect specific developmental processes remains largely unclear. Embryonic stem cells (ESCs) are self-renewing, pluripotent, and have the abilities to generate almost all cell types in adult tissues. The dual capacity of ESCs to self-renew and differentiate offers unlimited potential for studying gene regulation events at specific developmental stages in vitro that parallel developmental events during embryogenesis in vivo. …


Preclinical Development Of Therapeutic Strategies Against Triple-Negative And Inflammatory Breast Cancer, Angie M. Torres-Adorno Aug 2017

Preclinical Development Of Therapeutic Strategies Against Triple-Negative And Inflammatory Breast Cancer, Angie M. Torres-Adorno

Dissertations & Theses (Open Access)

Triple-negative (TNBC) and inflammatory (IBC) breast cancer are the most aggressive forms of breast cancer, accounting for 20% and 10% of cancer-related deaths, respectively. Among IBC cases, 30% are additionally classified with TNBC molecular pathology, a diagnosis that significantly worsens patient’s prognosis. The current lack of TNBC and IBC molecular understanding prevents the development of effective therapeutic strategies. To identify effective treatments, we explored aberrant apoptosis pathways and cell membrane fluidity as novel therapeutic targets.

We first identified an effective therapeutic strategy against TNBC and IBC by pro-apoptotic protein NOXA-mediated inhibition of the anti-apoptotic protein MCL1 following inhibition of histone …


Investigating The Role Of Prmt1 And Arginine Methylation Of Hsp70 In Human Pancreatic Cancer, Liang Wang Aug 2017

Investigating The Role Of Prmt1 And Arginine Methylation Of Hsp70 In Human Pancreatic Cancer, Liang Wang

Dissertations & Theses (Open Access)

Protein arginine methyltransferase 1 (PRMT1) is the major arginine methyltransferase, which catalyzes the addition of one or two methyl groups to the arginine residues of its substrate proteins. The best-known substrate for PRMT1 is histone, while more and more non-histone proteins are now found to be methylated by PRMT1. Dysregulation of PRMT1 is reported in several human cancer types. However, its biological roles in human pancreatic cancer initiation and development are still unclear. In the first part of this study, I found that the expression level of PRMT1 was elevated in both human and mouse pancreatic cancer tissues in immunohistochemistry …


Wisp1 Is An Overexpressed Driver Of Glioblastoma, Pushan R. Dasgupta Aug 2017

Wisp1 Is An Overexpressed Driver Of Glioblastoma, Pushan R. Dasgupta

Dissertations & Theses (Open Access)

Despite current multimodal therapies for glioblastoma (GBM) the prognosis remains very grim. There is a tremendous need to identify new genetic drivers which can serve as potential therapeutic targets. In order to find new drivers, we leveraged genomic datasets to conduct a context specific in vivo functional genomic screen of overexpressed and/or amplified genes in GBM. We identified WISP1, a secreted extracellular matrix protein, to be an overexpressed driver in GBM. Overexpression of WISP1 was able to drive tumor growth in various in vivo models. Knockdown of WISP1 with shRNAs resulted in reduced colony formation in vitro and reduced tumor …


Mechanisms Underlying The Sensitivity And Resistance Of Gastric Cancer Cells To Met Inhibitors, Rebecca Schroeder Aug 2017

Mechanisms Underlying The Sensitivity And Resistance Of Gastric Cancer Cells To Met Inhibitors, Rebecca Schroeder

Dissertations & Theses (Open Access)

MET amplification has been clinically credentialed as a therapeutic target in gastric cancer, but the molecular mechanisms underlying sensitivity and resistance to MET inhibitors are still not well understood. Using whole-genome mRNA expression profiling, we identified autophagy as a top molecular pathway that was activated by the MET inhibitor crizotinib in drug-sensitive human gastric cancer cells, and functional studies confirmed that crizotinib increased autophagy levels in the drug sensitive cells in a concentration-dependent manner. We then used chemical and molecular approaches to inhibit autophagy in order to define its role in cell death. The clinically available inhibitor of autophagy, chloroquine, …


Functional Characteristics Of Four Novel Lone Atrial Fibrillation-Linked Connexin40 Mutants, Mahmoud Noureldin Jul 2017

Functional Characteristics Of Four Novel Lone Atrial Fibrillation-Linked Connexin40 Mutants, Mahmoud Noureldin

Electronic Thesis and Dissertation Repository

Atrial fibrillation (AF) is the most common form of cardiac arrhythmia. Recently, four novel heterozygous Cx40 mutations, K107R, L223M, Q236H, and I257L were identified in 4 of 310 unrelated AF patients. To study possible alterations associated with these mutants, we studied their localization and function using gap junction (GJ)-deficient model cells. Cell pairs expressing Q236H alone or together with wildtype Cx43 showed a significantly lower coupling conductance. Impaired GJ function and dominant negative action on Cx43 of this mutant are consistent with previous findings on the majority of AF-linked Cx40 mutants. The remaining three novel AF-linked mutants did not show …


A Multiscale Modeling Study Of The Mammary Gland, Joseph D. Butner Jul 2017

A Multiscale Modeling Study Of The Mammary Gland, Joseph D. Butner

Biomedical Engineering ETDs

Multiscale, hybrid computer modeling has emerged as a valuable tool in the fields of computational systems biology and mathematical oncology. In this work, we present an overview of the motivations for, and development and implementation of, three hybrid multiscale models of the mammary gland system and early stage ductal carcinoma in situ (DCIS) in the gland. Pubertal mammary gland development was described first using a two-dimensional, lattice-based hybrid agent-based model description of the mammary terminal end bud (TEB), and then with a three-dimensional lattice-free TEB model. Both models implement a discrete, agent-based description of the cell scale, and a continuum, …


The Role Of Elevated Hyaluronan-Mediated Motility Receptor (Rhamm/Hmmr) In Ovarian Cancer, Stephanie T. Buttermore Jul 2017

The Role Of Elevated Hyaluronan-Mediated Motility Receptor (Rhamm/Hmmr) In Ovarian Cancer, Stephanie T. Buttermore

USF Tampa Graduate Theses and Dissertations

Ovarian cancer (OC) has the highest mortality among gynecological cancers. The high mortality is associated with the lack of an accurate screening tool to detect disease in early stage. As a result the majority of OCs are diagnosed in late stage. Further, the molecular events responsible for malignant transformation in the ovary remain poorly understood. Consequently, delineating key molecular players driving OC could help elucidate potential diagnostic, prognostic and therapeutic targets.

Receptor for hyaluronan-mediated motility (RHAMM) belongs to a group of hyaladherins, which share a common ability to bind to hyaluronan (HA). Intracellularly, RHAMM is involved in microtubule spindle assembly …


Rediscovery Of The Microtubule System In Chlamydomonas, Yi Liu Jul 2017

Rediscovery Of The Microtubule System In Chlamydomonas, Yi Liu

Dissertations (1934 -)

Extensive studies have revealed the complex mechanisms underlying the roles of the microtubule system in fundamental cellular processes, the severe consequences in development and health resulted from its anomaly, and the irreplaceable therapeutic agents that perturbs this vital yet inherently unstable cytoskeletal system. Most of the concepts derived from a handful of model organisms become dogma of the field despite contrary observations. By overcoming a major limitation of biflagellate green alga Chlamydomonas - the intense autofluorescence common to photosynthetic cells - this dissertation discovered new phenomena of the microtubule system and conceived an invention. The microtubule system of the green …


The Noncanonical Roles Of Two Primordial Molecules In Flagella, Xiaoyan Zhu Jul 2017

The Noncanonical Roles Of Two Primordial Molecules In Flagella, Xiaoyan Zhu

Dissertations (1934 -)

Motile cilia and flagella are ancient organelles that eukaryotic organisms today still rely on to thrive in their natural environment. Not surprisingly, accumulated evidence has shown that the intricate motility machinery, the microtubule-based axoneme, is evolutionarily conserved down to the molecular level. This notion is epitomized by the signature axonemal complex, the radial spoke (RS). The RS is part of a control center conferring the high frequency and tightly regulated movement. Key RS proteins discovered in biflagellate green alga, Chlamydomonas reinhardtii, are also generated by nearly all ciliated organisms, including Homo sapiens. Among them are two subunits from primordial protein …


A Lipid Binding Structure And Functional Analysis Of Human Arv1, Jessie Lee Cunningham Jun 2017

A Lipid Binding Structure And Functional Analysis Of Human Arv1, Jessie Lee Cunningham

Graduate School of Biomedical Sciences Theses and Dissertations

Metabolic Syndrome (MetS) is a combination of risk factors that can over time increase the probability of developing diseases, including cardiovascular disease, type 2 diabetes, non-alcoholic fatty liver disease (NAFLD), and non-alcoholic steatohepatitis (NASH). Acyl-coenzyme-A: cholesterol O-acyl transferase related enzyme required for viability-1, abbreviated as Arv1, is an evolutionarily conserved putative lipid binding protein. Several studies have implicated hArv1 as a critical regulator of lipid transport and trafficking.

Recent work using an Arv1 knock out (KO) mouse model have established a clear link between Arv1 function and the progression of MetS and NAFLD/NASH [unpublished data] [1]. Overall, studies show that …


Functional Roles Of Matrix Metalloproteinases In Bone Metastatic Prostate Cancer, Jeremy S. Frieling May 2017

Functional Roles Of Matrix Metalloproteinases In Bone Metastatic Prostate Cancer, Jeremy S. Frieling

USF Tampa Graduate Theses and Dissertations

Skeletal metastasis is a lethal component of many advanced cancers including prostate, the second most common cancer among men. Patients whose prostate cancer is localized and detected early benefit from multiple treatment options ranging from active surveillance to radiation and surgery, resulting in a 5-year survival rate of nearly 100%. Unfortunately, the prognosis and survival for patients with advanced metastatic disease is much worse due to the highly aggressive nature of the disease and a paucity of treatment options. Understanding the mechanisms and interactions that occur between metastatic cancer cells and the bone will enable the future treatment landscape for …