Open Access. Powered by Scholars. Published by Universities.®

Cell and Developmental Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Kinesiology

University of Arkansas, Fayetteville

Biological sciences

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Cell and Developmental Biology

Autophagy Regulation After Diet And Exercise In Non-Alcoholic Fatty Liver Disease, Megan Elizabeth Rosa Jan 2016

Autophagy Regulation After Diet And Exercise In Non-Alcoholic Fatty Liver Disease, Megan Elizabeth Rosa

Graduate Theses and Dissertations

Along with the rise in obesity, rates of non-alcoholic fatty liver disease (NAFLD) have also increased. NAFLD may begin with fat accumulation in the liver, but can progress to non-alcoholic steatohepatitis (NASH), fibrosis, and eventual cirrhosis. With no pharmacological treatment for NASH, lifestyle interventions appear vital to maintaining liver health. Previous work has shown aberrant mitochondrial content/quality and autophagy in models of NAFLD. Exercise is known to improve mitochondrial health and possibly autophagy, thus autophagy may be a key regulatory factor for treatment of obesity induced-NAFLD. PURPOSE: The purpose of the study was to examine how weight loss from diet …


Impacts Of Micrornas On Skeletal Muscle Protein Synthesis And Mitochondrial Quality, David Lee May 2015

Impacts Of Micrornas On Skeletal Muscle Protein Synthesis And Mitochondrial Quality, David Lee

Graduate Theses and Dissertations

microRNA (miRNA) post-transcriptional modification is becoming a well-established mechanism for controlling mRNA translation. microRNAs -1, -133, and -206 are under the control of skeletal muscle promoters and affect muscle plasticity and metabolic health. A detailed review on the generation and processing of miRNAs with a view to skeletal muscle brings up intriguing connections in the transcriptional connections between multiple miRNAs. Additionally, exciting new research has defined a role of miRNAs in skeletal muscle mitochondria showing an additional, direct link to metabolic function. Multiple investigations in models of exercise, aging, hypertrophy, and injury have shown how these interventions can affect miRNA …