Open Access. Powered by Scholars. Published by Universities.®

Cell and Developmental Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Cell and Developmental Biology

Identification Of Control Targets In Boolean Molecular Network Models Via Computational Algebra, David Murrugarra, Alan Veliz-Cuba, Boris Aguilar, Reinhard Laubenbacher Sep 2016

Identification Of Control Targets In Boolean Molecular Network Models Via Computational Algebra, David Murrugarra, Alan Veliz-Cuba, Boris Aguilar, Reinhard Laubenbacher

Mathematics Faculty Publications

Background: Many problems in biomedicine and other areas of the life sciences can be characterized as control problems, with the goal of finding strategies to change a disease or otherwise undesirable state of a biological system into another, more desirable, state through an intervention, such as a drug or other therapeutic treatment. The identification of such strategies is typically based on a mathematical model of the process to be altered through targeted control inputs. This paper focuses on processes at the molecular level that determine the state of an individual cell, involving signaling or gene regulation. The mathematical model type …


Modeling And Analysis Of Germ Layer Formations Using Finite Dynamical Systems, Alexander Garza, Megan Eberle, Eric A. Eager Aug 2016

Modeling And Analysis Of Germ Layer Formations Using Finite Dynamical Systems, Alexander Garza, Megan Eberle, Eric A. Eager

Spora: A Journal of Biomathematics

The development of an embryo from a fertilised egg to a multicellular organism proceeds through numerous steps, with the formation of the three germ layers (endoderm, mesoderm, ectoderm) being one of the first. In this paper we study the mesendoderm (the tissue that collectively gives rise to both mesoderm and endoderm) gene regulatory network for two species, \textit{Xenopus laevis} and the axolotl (\textit{Ambystoma mexicanum}) using Boolean networks. We find that previously-established bistability found in these networks can be reproduced using this Boolean framework, provided that some assumptions used in previously-published differential equations models are relaxed. We conclude by discussing our …