Open Access. Powered by Scholars. Published by Universities.®

Cell and Developmental Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Cell and Developmental Biology

Ecological Correlates Of Buggy Creek Virus Infection In Oeciacus Vicarius, Southwestern Nebraska, 2004, Amy T. Moore, Eric A. Edwards, Mary Bomberger Brown, Nicholas Komar, Charles R. Brown Jan 2007

Ecological Correlates Of Buggy Creek Virus Infection In Oeciacus Vicarius, Southwestern Nebraska, 2004, Amy T. Moore, Eric A. Edwards, Mary Bomberger Brown, Nicholas Komar, Charles R. Brown

School of Natural Resources: Faculty Publications

Buggy Creek virus (family Togaviridae, genus Alphavirus, BCRV) is an alphavirus within the western equine encephalitis virus complex whose primary vector is the swallow bug, Oeciacus vicarius Horvath (Hemiptera: Cimicidae), an ectoparasite of the colonially nesting cliff swallow, Petrochelidon pyrrhonota, that is also a frequent host for the virus.We investigated ecological correlates of BCRV infection in 100-bug pools at 14 different swallow colony sites in southwestern Nebraska from summer 2004, by using plaque assay on Vero cells to identify cytopathic virus and reverse transcription-polymerase chain reaction to identify noncytopathic viral RNA. We found 26.7% of swallow bug pools …


Distribution And Conservation Genetics Of The Cow Knob Salamander, Plethodon Punctatus Highton (Caudata: Plethodontidae), Matthew R. Graham Jan 2007

Distribution And Conservation Genetics Of The Cow Knob Salamander, Plethodon Punctatus Highton (Caudata: Plethodontidae), Matthew R. Graham

Theses, Dissertations and Capstones

Being lungless, plethodontid salamanders respire through their skin and are especially sensitive to environmental disturbances. Habitat fragmentation, low abundance, extreme habitat requirements, and a narrow distribution of less than 70 miles in length, makes one such salamander, Plethodon punctatus, a species of concern (S1) in West Virginia. To better understand this sensitive species, day and night survey hikes were conducted through ideal habitat and coordinate data as well as tail tips (10 to 20 mm in length) were collected. DNA was extracted from the tail tips and polymerase chain reaction (PCR) was used to amplify mitochondrial 16S rRNA gene fragments. …


Runx2 Is Essential For Larval Hyobranchial Cartilage Formation In Xenopus Laevis, Ryan Kerney, Joshua Gross, James Hanken Dec 2006

Runx2 Is Essential For Larval Hyobranchial Cartilage Formation In Xenopus Laevis, Ryan Kerney, Joshua Gross, James Hanken

Ryan Kerney

The vertebrate transcription factor protein Runx2 is regarded as a “master regulator” of bone formation due to the dramatic loss of the osseous skeleton in the mouse homozygous knockout. However, Runx2 mRNA also is expressed in the pre-hypertrophic cartilaginous skeleton of the mouse and chicken, where its developmental function is largely unknown. Several tiers of Runx2 regulation exist in the mouse, any of which may account for its seeming biological inactivity during early stages of skeletogenesis. Unlike mouse and chicken, zebrafish require Runx2 function in early cartilage differentiation. The present study reveals that the earlier functional role of Runx2 in …


Cranial Ontogeny In Philautus Silus (Anura: Ranidae: Rhacophorinae) Reveals Few Similarities With Other Direct-Developing Anurans, Ryan Kerney, Madhava Meegaskumbura, Kelum Manamendra-Arachchi, James Hanken Dec 2006

Cranial Ontogeny In Philautus Silus (Anura: Ranidae: Rhacophorinae) Reveals Few Similarities With Other Direct-Developing Anurans, Ryan Kerney, Madhava Meegaskumbura, Kelum Manamendra-Arachchi, James Hanken

Ryan Kerney

Direct development has evolved in rhaco- phorine frogs independently from other anuran lineages, thereby offering an opportunity to assess features associ- ated with this derived life history. Using a developmen- tal series of the direct-developing Philautus silus (Ranidae: Rhacophorinae) from Sri Lanka, we examine features of cranial morphology that are part of a suite of adaptations that facilitate feeding in free-living tadpoles, but have been changed or lost in other direct-developing lineages. Larval-specific upper jaw cartilages, which are absent from many non-rhacophorine direct-developing species (such as Eleutherodactylus coqui), develop in embryos of P. silus. Similarly, lower jaw cartilages ini- tially …