Open Access. Powered by Scholars. Published by Universities.®

Cell and Developmental Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Developmental Biology

Victor R. Ambros

Mutation

Articles 1 - 7 of 7

Full-Text Articles in Cell and Developmental Biology

Mutations In Conserved Residues Of The C. Elegans Microrna Argonaute Alg-1 Identify Separable Functions In Alg-1 Mirisc Loading And Target Repression, Anna Y. Zinovyeva, Samir Bouasker, Martin J. Simard, Christopher M. Hammell, Victor R. Ambros Oct 2015

Mutations In Conserved Residues Of The C. Elegans Microrna Argonaute Alg-1 Identify Separable Functions In Alg-1 Mirisc Loading And Target Repression, Anna Y. Zinovyeva, Samir Bouasker, Martin J. Simard, Christopher M. Hammell, Victor R. Ambros

Victor R. Ambros

microRNAs function in diverse developmental and physiological processes by regulating target gene expression at the post-transcriptional level. ALG-1 is one of two Caenorhabditis elegans Argonautes (ALG-1 and ALG-2) that together are essential for microRNA biogenesis and function. Here, we report the identification of novel antimorphic (anti) alleles of ALG-1 as suppressors of lin-28(lf) precocious developmental phenotypes. The alg-1(anti) mutations broadly impair the function of many microRNAs and cause dosage-dependent phenotypes that are more severe than the complete loss of ALG-1. ALG-1(anti) mutant proteins are competent for promoting Dicer cleavage of microRNA precursors and for associating with and stabilizing microRNAs. However, …


Caenorhabditis Elegans Micrornas Of The Let-7 Family Act In Innate Immune Response Circuits And Confer Robust Developmental Timing Against Pathogen Stress, Zhiji Ren, Victor R. Ambros Oct 2015

Caenorhabditis Elegans Micrornas Of The Let-7 Family Act In Innate Immune Response Circuits And Confer Robust Developmental Timing Against Pathogen Stress, Zhiji Ren, Victor R. Ambros

Victor R. Ambros

Animals maintain their developmental robustness against natural stresses through numerous regulatory mechanisms, including the posttranscriptional regulation of gene expression by microRNAs (miRNAs). Caenorhabditis elegans miRNAs of the let-7 family (let-7-Fam) function semiredundantly to confer robust stage specificity of cell fates in the hypodermal seam cell lineages. Here, we show reciprocal regulatory interactions between let-7-Fam miRNAs and the innate immune response pathway in C. elegans. Upon infection of C. elegans larvae with the opportunistic human pathogen Pseudomonas aeruginosa, the developmental timing defects of certain let-7-Fam miRNA mutants are enhanced. This enhancement is mediated by the p38 MAPK innate immune pathway acting …


Micrornas: Genetically Sensitized Worms Reveal New Secrets, Victor Ambros Oct 2015

Micrornas: Genetically Sensitized Worms Reveal New Secrets, Victor Ambros

Victor R. Ambros

Why do many microRNA gene mutants display no evident phenotype? Multiply mutant worms that are selectively impaired in genetic regulatory network activities have been used to uncover previously unknown functions for numerous Caenorhabditis elegans microRNAs.


A Feedback Circuit Involving Let-7-Family Mirnas And Daf-12 Integrates Environmental Signals And Developmental Timing In Caenorhabditis Elegans, Christopher M. Hammell, Xantha Karp, Victor R. Ambros Nov 2009

A Feedback Circuit Involving Let-7-Family Mirnas And Daf-12 Integrates Environmental Signals And Developmental Timing In Caenorhabditis Elegans, Christopher M. Hammell, Xantha Karp, Victor R. Ambros

Victor R. Ambros

Animal development is remarkably robust; cell fates are specified with spatial and temporal precision despite physiological and environmental contingencies. Favorable conditions cause Caenorhabditis elegans to develop rapidly through four larval stages (L1-L4) to the reproductive adult. In unfavorable conditions, L2 larvae can enter the developmentally quiescent, stress-resistant dauer larva stage, enabling them to survive for prolonged periods before completing development. A specific progression of cell division and differentiation events occurs with fidelity during the larval stages, regardless of whether an animal undergoes continuous or dauer-interrupted development. The temporal patterning of developmental events is controlled by the heterochronic genes, whose products …


Heterochronic Genes Control The Stage-Specific Initiation And Expression Of The Dauer Larva Developmental Program In Caenorhabditis Elegans, Zhongchi Liu, Victor R. Ambros Nov 1989

Heterochronic Genes Control The Stage-Specific Initiation And Expression Of The Dauer Larva Developmental Program In Caenorhabditis Elegans, Zhongchi Liu, Victor R. Ambros

Victor R. Ambros

We report that a stage-specific developmental program, dauer larva formation, is temporally regulated by four heterochronic genes, lin-4, lin-14, lin-28, and lin-29. The effects of mutations in these four genes on dauer larva formation have revealed that they regulate two different processes of dauer larva formation: (1) a decision specifying the larval stage at which dauer larva development initiates, and (2) the specialized differentiation of hypodermal cells during dauer larva morphogenesis. Epistasis analysis has suggested a model in which lin-4 negatively regulates lin-14, and the resulting temporal decrease in lin-14 activity specifies the stage of dauer larva initiation. Our results …


A New Kind Of Informational Suppression In The Nematode Caenorhabditis Elegans, Jonathan Hodgekin, Andrew Papp, Rock Pulak, Victor Ambros, Philip Anderson Sep 1989

A New Kind Of Informational Suppression In The Nematode Caenorhabditis Elegans, Jonathan Hodgekin, Andrew Papp, Rock Pulak, Victor Ambros, Philip Anderson

Victor R. Ambros

Independent reversions of mutations affecting three different Caenorhabditis elegans genes have each yielded representatives of the same set of extragenic suppressors. Mutations at any one of six loci act as allele-specific recessive suppressors of certain allels of unc-54 (a myosin heavy chain gene), lin-29 (a heterochronic gene), and tra-2 (a sex determination gene). The same mutations also suppress certain alleles of another sex determination gene, tra-1, and of a morphogenetic gene, dpy-5. In addition to their suppression phenotype, the suppressor mutations cause abnormal morphogenesis of the male bursa and the hermaphrodite vulva. We name these genes smg-1 through smg-6 (suppressor …


Heterochronic Mutants Of The Nematode Caenorhabditis Elegans, Victor Ambros, R. Horvitz Oct 1984

Heterochronic Mutants Of The Nematode Caenorhabditis Elegans, Victor Ambros, R. Horvitz

Victor R. Ambros

Mutations in the Caenorhabditis elegans genes lin-14, lin-28, and lin-29 cause heterochronic developmental defects: the timing of specific developmental events in several tissues is altered relative to the timing of events in other tissues. These defects result from temporal transformations in the fates of specific cells, that is, certain cells express fates normally expressed by cells generated at other developmental stages. The identification and characterization of genes that can be mutated to cause heterochrony support the proposal that heterochrony is a mechanism for phylogenetic change and suggest cellular and genetic bases for heterochronic variation.