Open Access. Powered by Scholars. Published by Universities.®

Cell and Developmental Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Developmental Biology

Victor R. Ambros

Cell Differentiation

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Cell and Developmental Biology

Micrornas And Developmental Timing, Victor Ambros Oct 2015

Micrornas And Developmental Timing, Victor Ambros

Victor R. Ambros

MicroRNAs regulate temporal transitions in gene expression associated with cell fate progression and differentiation throughout animal development. Genetic analysis of developmental timing in the nematode Caenorhabditis elegans identified two evolutionarily conserved microRNAs, lin-4/mir-125 and let-7, that regulate cell fate progression and differentiation in C. elegans cell lineages. MicroRNAs perform analogous developmental timing functions in other animals, including mammals. By regulating cell fate choices and transitions between pluripotency and differentiation, microRNAs help to orchestrate developmental events throughout the developing animal, and to play tissue homeostasis roles important for disease, including cancer.


Alternative Temporal Control Systems For Hypodermal Cell Differentiation In Caenorhabditis Elegans, Zhongchi Liu, Victor Ambros Mar 1991

Alternative Temporal Control Systems For Hypodermal Cell Differentiation In Caenorhabditis Elegans, Zhongchi Liu, Victor Ambros

Victor R. Ambros

Beginning of article: In certain multicellular organisms, genetic regulatory systems that specify the timing of cell division, differentiation and morpho-genesis must accommodate environmental and physiological contingencies that perturb or arrest development. For example, Caenorhabditis elegans can either develop continuously through four larval stages (L1–L4) or arrest indefinitely as a 'dauer larva' at the second larval (L2) moult, and later resume L3 and L4 development. At the larva-to-adult (L4) moult of both con-tinuous and 'post-dauer' development, hypodermal cells switch (the 'L/A switch') from a proliferating state to the terminally differentiated state. Four temporal regulators, lin-4, lin-14, lin-28 and lin-29, have been …