Open Access. Powered by Scholars. Published by Universities.®

Cell and Developmental Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Developmental Biology

Victor R. Ambros

*Genes, Helminth

Publication Year

Articles 1 - 3 of 3

Full-Text Articles in Cell and Developmental Biology

The Cold Shock Domain Protein Lin-28 Controls Developmental Timing In C. Elegans And Is Regulated By The Lin-4 Rna, Eric Moss, Rosalind Lee, Victor Ambros Mar 1997

The Cold Shock Domain Protein Lin-28 Controls Developmental Timing In C. Elegans And Is Regulated By The Lin-4 Rna, Eric Moss, Rosalind Lee, Victor Ambros

Victor R. Ambros

Mutations in the heterochronic gene lin-28 of C. elegans cause precocious development where diverse events specific to the second larval stage are skipped. lin-28 encodes a cytoplasmic protein with a cold shock domain and retroviral-type (CCHC) zinc finger motifs, consistent with a role for LIN-28 in posttranscriptional regulation. The 3'UTR of lin-28 contains a conserved element that is complementary to the 22 nt regulatory RNA product of lin-4 and that resembles seven such elements in the 3'UTR of the heterochronic gene lin-14. Both lin-4 activity and the lin-4-complementary element (LCE) are necessary for stage-specific regulation of lin-28. Deleting the LCE …


Heterochronic Genes Control Cell Cycle Progress And Developmental Competence Of C. Elegans Vulva Precursor Cells, Susan Euling, Victor Ambros Mar 1996

Heterochronic Genes Control Cell Cycle Progress And Developmental Competence Of C. Elegans Vulva Precursor Cells, Susan Euling, Victor Ambros

Victor R. Ambros

Heterochronic genes control the timing of vulval development in the C. elegans hermaphrodite. lin-14 or lin-28 loss-of-function mutations cause the vulval precursor cells (VPCs) to enter S phase and to divide one larval stage earlier than in the wild type. A precocious vulva is formed by essentially normal cell lineage patterns, governed by the same intercellular signals as in the wild type. Mutations that prevent the normal developmental down-regulation of lin-14, activity delay or block VPC division and prevent vulval differentiation. A genetic pathway that includes lin-4, lin-14, and lin-28 controls when VPCs complete G1 and also controls when VPCs …


The Heterochronic Gene Lin-29 Encodes A Zinc Finger Protein That Controls A Terminal Differentiation Event In Caenorhabditis Elegans, Ann Rougvie, Victor Ambros Jul 1995

The Heterochronic Gene Lin-29 Encodes A Zinc Finger Protein That Controls A Terminal Differentiation Event In Caenorhabditis Elegans, Ann Rougvie, Victor Ambros

Victor R. Ambros

A hierarchy of heterochronic genes, lin-4, lin-14, lin-28 and lin-29, temporally restricts terminal differentiation of Caenorhabditis elegans hypodermal seam cells to the final molt. This terminal differentiation event involves cell cycle exit, cell fusion and the differential regulation of genes expressed in the larval versus adult hypodermis. lin-29 is the most downstream gene in the developmental timing pathway and thus it is the most direct known regulator of these diverse processes. We show that lin-29 encodes a protein with five zinc fingers of the (Cys)2-(His)2 class and thus likely controls these processes by regulating transcription in a stage-specific manner. Consistent …