Open Access. Powered by Scholars. Published by Universities.®

Cell and Developmental Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Biological Phenomena, Cell Phenomena, and Immunity

PDF

Theses/Dissertations

Institution
Keyword
Publication Year
Publication

Articles 1 - 30 of 46

Full-Text Articles in Cell and Developmental Biology

Methamphetamine-Induced Dna Double-Stranded Breaks: The Impact Of The Dopamine Transporter And Insights Into The Mechanisms Of Dna Damage In Mouse Neuro 2a Cells, Lizette Couto Feb 2024

Methamphetamine-Induced Dna Double-Stranded Breaks: The Impact Of The Dopamine Transporter And Insights Into The Mechanisms Of Dna Damage In Mouse Neuro 2a Cells, Lizette Couto

Dissertations, Theses, and Capstone Projects

Methamphetamine (METH) abuse remains a global health concern, with emerging evidence highlighting its genotoxic potential. In the central nervous system METH enters dopaminergic cells primarily through the dopamine transporter (DAT), which controls the dynamics of dopamine (DA) neurotransmission by driving the reuptake of extracellular DA into the presynaptic neuronal cell. Additional effects of METH on the storage of DA in synaptic vesicles lead to the dysregulated cytosolic accumulation of DA. Previous studies have shown that after METH disrupts intracellular vesicular stores of DA, the excess DA in the cytosol is rapidly oxidized. This generates an abundance of reactive oxygen species …


Role Of Chronic Stress-Induced Neuroinflammation In Rodent Locus Coeruleus Physiology And Anxiety-Like Behaviors, Arthur Anthony Alfonso Reyes Jun 2023

Role Of Chronic Stress-Induced Neuroinflammation In Rodent Locus Coeruleus Physiology And Anxiety-Like Behaviors, Arthur Anthony Alfonso Reyes

Graduate School of Biomedical Sciences Theses and Dissertations

The locus coeruleus (LC), the primary site of brain norepinephrine (NE), is a key anatomical brain region implicated in the stress response. Stress is a neuroendocrine physiologic response to a stressor that promotes organism survival through adaptive change and restoration of homeostasis. The central stress response, which drives behavioral and physiological change, is primarily mediated by activating the hypothalamic-pituitary-adrenal (HPA) axis. While advantageous in the short term, chronic stress exposure can lead to HPA axis and LC dysregulation, which are thought to contribute to the etiology of anxiety disorders. Previous studies demonstrate the effects of acute stress in increasing LC …


Immunomodulatory Effects Of Resolvin D2 In A Model Of Infection, Prem Yugandhar Kadiyam Sundarasivarao May 2023

Immunomodulatory Effects Of Resolvin D2 In A Model Of Infection, Prem Yugandhar Kadiyam Sundarasivarao

Graduate School of Biomedical Sciences Theses and Dissertations

Dysregulated hyperinflammatory host immune response to underlying bacterial infections is a characteristic of sepsis. In sepsis, bacteria often trigger abnormal hyperinflammatory responses which can cause multiple organ failure and if sustained can lead to an immunosuppressive phase where the host is susceptible to secondary infections caused by opportunistic bacteria like Pseudomonas aeruginosa (P. aeruginosa). In our studies, we used a 2-hit model of cecal ligation and puncture (CLP) followed by P. aeruginosa secondary lung infection to investigate cellular and molecular mechanisms in the beneficial action of resolvin D2 (RvD2). Resolvins of the D-series are a group of fatty acids known …


Med13 Degradation Defines A New Receptor-Mediated Autophagy Pathway Activated By Nutrient Deprivation, Sara E. Hanley Apr 2023

Med13 Degradation Defines A New Receptor-Mediated Autophagy Pathway Activated By Nutrient Deprivation, Sara E. Hanley

Graduate School of Biomedical Sciences Theses and Dissertations

Cells are exposed to an enormous amount of diverse extracellular cues but have a limited arsenal of weapons for protecting and maintaining homeostasis. To overcome these restrictions, nature has engineered proteins that have multiple functions. The pleiotropy of using one protein to carry out a variety of functions allows cells to rapidly execute tailored responses to a diverse set of signals. The Cdk8 kinase module (CKM) is a conserved detachable unit of the Mediator complex predominantly known for its role in transcriptional regulation. The CKM is composed of four proteins, the scaffolding proteins Med13 and Med12, as well as the …


The Effects Of Specialized Pro-Resolving Mediator Lipoxin A4 On Pseudomonas Aeruginosa Biofilms And Interactions With Monocytes, Julianne M. Thornton Apr 2023

The Effects Of Specialized Pro-Resolving Mediator Lipoxin A4 On Pseudomonas Aeruginosa Biofilms And Interactions With Monocytes, Julianne M. Thornton

Graduate School of Biomedical Sciences Theses and Dissertations

Pseudomonas aeruginosa (P. aeruginosa) is an opportunistic pathogen known as a major cause of hospital-acquired secondary infections, commonly causing chronic respiratory infections in immunocompromised individuals, especially those with cystic fibrosis, and often found in wound infections. P. aeruginosa uses the quorum sensing pathway to readily form protective biofilms, which reduce the efficacy of antibiotics and access by host immune cells to eradicate the pathogen. Specialized pro-resolving mediators (SPMs) are lipids endogenously produced by the host immune response to infection to aid in infection resolution. One SPM, Lipoxin A4 (LxA4), has been shown to be a robust quorum sensing inhibitor.

The …


Crosstalk Between The Extracellular Matrix And The Cell- Cell Junction - Associated Rnai Machinery Regulates Colon Cancer Cell Behavior, Amanda Daulagala Mar 2023

Crosstalk Between The Extracellular Matrix And The Cell- Cell Junction - Associated Rnai Machinery Regulates Colon Cancer Cell Behavior, Amanda Daulagala

MUSC Theses and Dissertations

Colon cancer is the third most common and second deadliest type of cancer. Colon cancer is broadly characterized by compromised epithelial integrity and by aberrant extracellular matrix (ECM) remodeling. However, a potential mechanistic connection between epithelial integrity and ECM remodeling that could be contributing to the disease progression, has not been explored yet. The Adherens Junction (AJ) is a cell-cell adhesion complex composed of cadherin and catenin family proteins and essential for establishing and maintaining epithelial tissue integrity. Our previous work revealed that PLEKHA7, an E-cadherin-p120 catenin partner, recruits the microprocessor and the RNA-induced silencing complex (RISC), key components of …


The Role Of The Hypoxia-Inducible Factor 2 In Pancreatic Cancer: Mechanisms Of Tumor Immunosuppression And Intestinal Radioprotection, Carolina Garcia Garcia Aug 2022

The Role Of The Hypoxia-Inducible Factor 2 In Pancreatic Cancer: Mechanisms Of Tumor Immunosuppression And Intestinal Radioprotection, Carolina Garcia Garcia

Dissertations & Theses (Open Access)

Pancreatic ductal adenocarcinoma (PDAC) is a devastating disease with dismal prognosis. The only curative option for patients is surgery, but over 80% of patients are not surgical candidates. Unfortunately, PDAC is resistant to the three remaining options. PDAC is characterized by a profoundly hypoxic and immunosuppressive stroma, which contributes to its therapeutic recalcitrance. Alpha-smooth muscle actin+ (αSMA+) cancer-associated fibroblasts (CAFs) are the most abundant stromal component, as well as mediators of stromal deposition. The hypoxia-inducible factors (HIF1 and HIF2) coordinate responses to hypoxia, yet, despite their known association to poor patient outcomes, their functions within the PDAC tumor microenvironment (TME) …


Identifying A Glucocorticoid-Activated Gpcr That Rapidly And Non-Genomically Increases Camp Levels In Mammalian Cells, Francisco Nunez Aug 2022

Identifying A Glucocorticoid-Activated Gpcr That Rapidly And Non-Genomically Increases Camp Levels In Mammalian Cells, Francisco Nunez

Pharmaceutical Sciences (PhD) Dissertations

Glucocorticoids (GCs) are steroid hormones that regulate diverse physiological processes. Synthetic versions of GCs are commonly used to treat inflammatory diseases such as asthma by modulating gene expression to suppressing several inflammatory activities. However, it is estimated that 5-10% of asthmatics are unresponsive to GCs, which may be explained by receptor desensitization and/or the presence of a neutrophilic endotype. One understudied phenomenon of GCs is their ability to induce rapid, non-genomic actions. For example, GCs can acutely modulate calcium concentrations levels, induce smooth muscle relaxation and modulate nitric oxide synthase activity, within minutes and sometimes seconds, which is too rapid …


Hyper Stable Variants Of Fgf-1-Fgf-2 Dimer, Madison Shields Mcclanahan May 2022

Hyper Stable Variants Of Fgf-1-Fgf-2 Dimer, Madison Shields Mcclanahan

Chemistry & Biochemistry Undergraduate Honors Theses

Fibroblast Growth Factors (FGFs), including FGF-1 and FGF-2, are proteins that play a crucial role in cell proliferation, cell differentiation, cell migration, and tissue repair. FGF-1 and FGF-2 are useful in accelerating the healing process in the human body; however, these proteins are naturally thermally unstable, resulting in a relatively low half-life in vivo. 1,8 In efforts to improve the stability of this protein, FGF-1 and FGF-2 proteins are engineered by combining the amino acid sequences of the two proteins to form a heterodimer and obtain novel properties. These two FGF variants are chosen for their specific wound healing capabilities. …


Search For Palladin, An Actin-Associated Protein, In Pig Retinal Pigmented Epithelium And Its Role In Epithelial-Mesenchymal Transition, Katrina Powell May 2021

Search For Palladin, An Actin-Associated Protein, In Pig Retinal Pigmented Epithelium And Its Role In Epithelial-Mesenchymal Transition, Katrina Powell

Undergraduate Theses

This study investigates the expression of Palladin, a phosphoprotein product of the PALLD gene, in the retinal pigmented epithelium (RPE). Palladin is an actin cross-linking protein and plays a role in cell adhesion and motility. Published reports have demonstrated that a down regulation of Palladin in colon cancer cells results in a reorganization of the actin cytoskeleton, causing the cells to lose their typical shape, become proliferative and migratory. This process is otherwise known as epithelial-mesenchymal transition (EMT). A similar EMT phenomenon is observed when the RPE is exposed to the vitreous humor in patients with proliferative vitreoretinopathy (PVR). In …


Cyclin C Determines Cell Fate In Response To Oxidative Stress And Proteasome Inhibition, David C. Stieg May 2021

Cyclin C Determines Cell Fate In Response To Oxidative Stress And Proteasome Inhibition, David C. Stieg

Graduate School of Biomedical Sciences Theses and Dissertations

In response to various sources of cellular stress, the coordination of intracellular events is necessary to elicit the appropriate molecular response. In particular, the reprogramming of gene expression by stress-specific transcription factors drives the activation of signaling pathways, triggering either cell survival or regulated cell death pathways. The Cdk8 kinase module (CKM) is a highly conserved transcriptional regulatory complex with a role in this decision. The CKM is composed of Cdk8, its activating partner cyclin C, and two scaffold proteins, Med12 and Med13. The CKM is a detachable subunit of the Mediator complex, which interacts with RNA polymerase II to …


Developing A Microdialysis Sampling-Based Biofilm/Macrophage Co-Culture Model, Alda Diaz Perez May 2021

Developing A Microdialysis Sampling-Based Biofilm/Macrophage Co-Culture Model, Alda Diaz Perez

Graduate Theses and Dissertations

The host immune system and bacterial cells are known to interact during the human lifetime. Bacteria secrete a wide variety of signaling molecules, known as quorum sensing (QSC) molecules, that modulate the host immune system. While immune-biofilm interactions involve this chemical signaling network, the mechanisms through which this occurs are not well understood. This work aimed to develop a new method that can be used not only in vitro settings but also in vivo. The microdialysis sampling technique has widely been used in in vitro and in vivo settings in humans, mice, and rats for the collection of neuropeptides, cytokines, …


Na/K-Atpase Alphα1 Regulates Adipogenesis Via Its Conserved Caveolin Binding Motif, Minqi Huang Jan 2021

Na/K-Atpase Alphα1 Regulates Adipogenesis Via Its Conserved Caveolin Binding Motif, Minqi Huang

Theses, Dissertations and Capstones

The Na/K-ATPase (NKA) was identified in 1957 by Dr. Jens C. Skou. It belongs to the P-type ATPase family, which can actively transport ions across cell membranes by using the energy from adenosine triphosphate (ATP) hydrolysis. During the second half of the 20th century, the molecular mechanism of the NKA catalytic cycle was clarified, and the isoform diversity of NKA in different species and organs was identified. The active ion transport through NKA generates cell membrane ion gradients and the electric potential. Hence, the enzymatic function of NKA is critical for cell viability as well as multiple physiological processes including …


Potential Counter Regulatory Effects Of A Gut Microbiota Metabolite In Alleviating Down-Regulation Krüppel-Like Factor 4 In Intestinal Inflammation, Ylva Forslund Jan 2021

Potential Counter Regulatory Effects Of A Gut Microbiota Metabolite In Alleviating Down-Regulation Krüppel-Like Factor 4 In Intestinal Inflammation, Ylva Forslund

Theses, Dissertations and Capstones

Inflammatory bowel disease (IBD) is a medical condition characterized by chronic inflammation of the intestinal epithelium. Krüppel-like factor 4 (KLF4), a zinc finger transcription factor, is vital for maintaining intestinal epithelial homeostasis. KLF4 promotes differentiation of goblet cells that generate the protective mucus layer. Reduced goblet cell number and defective mucus layer are associated with IBD. Shortchain fatty acids (SCFA) are known to play an important role in the maintenance of a strong and healthy intestinal epithelial layer and also in goblet cell differentiation. However, whether the positive effects of SCFAs on goblet cells are mediated, at least partly, via …


Targeting Epigenetic Mechanisms In Endometriosis, Sarah Elizabeth Brunty Jan 2021

Targeting Epigenetic Mechanisms In Endometriosis, Sarah Elizabeth Brunty

Theses, Dissertations and Capstones

Endometriosis is a complex and elusive gynecological disease in which the inner lining of the uterus grows in locations outside of the uterus and forms lesions. It is known to affect 1 in 9 women of reproductive age worldwide. Symptoms of endometriosis include severe pain, heavy periods, and infertility. While multiple theories of origin exist, none fully encompass all aspects of the disease, although all theories agree that this is an inflammation-driven disease. Due to this, many researchers are turning towards epigenetics to explain the initiation and progression of endometriosis. However, what is causing these epigenetic changes is still a …


Mitochondrial Aspects Of Neuronal Pathology In Triple-Transgenic Alzheimer’S Disease Mice, John Zachary Cavendish Jan 2021

Mitochondrial Aspects Of Neuronal Pathology In Triple-Transgenic Alzheimer’S Disease Mice, John Zachary Cavendish

Graduate Theses, Dissertations, and Problem Reports

Alzheimer’s disease (AD) is a fatal, progressive neurodegenerative disease afflicting millions of people in the United States alone and is the only one of the top leading causes of morbidity and mortality with no effective disease-modifying therapies. It is the most common form of dementia, affecting one in three people over the age of 85. While the hallmarks of the disease include accumulation of beta-amyloid-based extracellular plaques and hyperphosphorylated tau-based intracellular neurofibrillary tangles, treatment strategies centered on removing or mitigating these components of AD have all failed in humans. Mitochondrial dysfunction has been increasingly recognized as an early and consistent …


Tissue-Resident Myeloid-Derived Suppressor Cells Modulate Immune Homeostasis In Healthy Adipose., Katlin Brooke Stivers Aug 2020

Tissue-Resident Myeloid-Derived Suppressor Cells Modulate Immune Homeostasis In Healthy Adipose., Katlin Brooke Stivers

Electronic Theses and Dissertations

Our goal with this study was to gain insight into the homeostatic immune cell network in healthy adipose tissue. Specifically, we sought to determine if the immature myeloid cells found in healthy and inflamed adipose were, in fact, tissue-resident myeloid-derived suppressor cells (MDSCs). Using various in vitro and in vivo methods, we have uncovered a population of CD11bHi Ly6CHi Ly6G- MDSCs resident in healthy adipose tissue. To the best of our knowledge this is the first time that these cells have been investigated and described in healthy adipose tissue. Systemic MDSC depletion lead to the accumulation of …


The Autoimmune System: The Effect Of Physiological Stressors On Autoantibody Glycosylation And Fidelity Of Autoantibody Profiles, Rahil Kheirkhah May 2020

The Autoimmune System: The Effect Of Physiological Stressors On Autoantibody Glycosylation And Fidelity Of Autoantibody Profiles, Rahil Kheirkhah

Graduate School of Biomedical Sciences Theses and Dissertations

The presence of thousands of autoantibodies (aABs) in the human sera is typical, and therefore it is possible to identify an aAB profile for each individual. In the first part of this thesis, we will show the cerebrospinal fluid also exhibits an extraordinarily complex immunoglobulin G aAB profile that is composed of thousands of aABs. We show that the pattern of expression of individual aABs in CSF closely mimics that in the blood, indicative of a blood-based origin for CSF aABs. In addition, using longitudinal serum samples obtained over a span of nine years, we show remarkable stability in aAB …


Natural Autoantibodies: Origin, Function And Utility For Diagnosis Of Disease, Abhirup Sarkar Aug 2019

Natural Autoantibodies: Origin, Function And Utility For Diagnosis Of Disease, Abhirup Sarkar

Graduate School of Biomedical Sciences Theses and Dissertations

Autoantibodies (aAbs) by the simplest definitions have been described as antibodies against self-antigens and were exclusively associated with autoimmune diseases. Eventually, studies demonstrated that they are abundant in the blood of all human sera, regardless of age, gender, or the presence or absence of disease, and were thus named as ‘natural autoantibodies’. The underlying reason for their ubiquity has remained elusive, but we have hypothesized that they are responsible for clearing blood-borne cell and tissue debris generated under conditions of health and disease. To test this, we chose to use two widely different disease model systems, namely neurodegenerative diseases and …


Inhibition Of Ribosome Biogenesis Through Genetic And Chemical Approaches, Leonid Anikin Aug 2018

Inhibition Of Ribosome Biogenesis Through Genetic And Chemical Approaches, Leonid Anikin

Graduate School of Biomedical Sciences Theses and Dissertations

In order to maintain the ability to generate proteins, proliferating cells must continuously generate ribosomes, designating up to 80% of their energy to ribosome biogenesis (RBG). RBG involves transcription of rDNA by RNA polymerases I (Pol I) and III (Pol III), expression of approximately 80 ribosomal proteins, and assembly of these components in a process referred to as ribosome maturation. During maturation, the Pol I transcribed 47S pre-rRNA undergoes a number of processing events, while simultaneously interacting with processing factors and ribosomal proteins that drive pre-ribosome assembly. Inhibition of RBG has become one of the pursued targets for cancer therapy …


Deciphering The Role Of Human Arylamine N-Acetyltransferase 1 (Nat1) In Breast Cancer Cell Metabolism Using A Systems Biology Approach., Samantha Marie Carlisle Aug 2018

Deciphering The Role Of Human Arylamine N-Acetyltransferase 1 (Nat1) In Breast Cancer Cell Metabolism Using A Systems Biology Approach., Samantha Marie Carlisle

Electronic Theses and Dissertations

Background: Human arylamine N-acetyltransferase 1 (NAT1) is a phase II xenobiotic metabolizing enzyme found in almost all tissues. NAT1 can additionally hydrolyze acetyl-coenzyme A (acetyl-CoA) in the absence of an arylamine substrate. NAT1 expression varies inter-individually and is elevated in several cancers including estrogen receptor positive (ER+) breast cancers. Additionally, multiple studies have shown the knockdown of NAT1, by both small molecule inhibition and siRNA methods, in breast cancer cells leads to decreased invasive ability and proliferation and decreased anchorage-independent colony formation. However, the exact mechanism by which NAT1 expression affects cancer risk and progression remains unclear. Additionally, consequences …


Evaluation Of Endothelial Cell Responses To Elevated Glucose, Gabriella Sugerman Aug 2018

Evaluation Of Endothelial Cell Responses To Elevated Glucose, Gabriella Sugerman

Master's Theses

Developing a tissue-engineered Blood Vessel Mimic (BVM) to represent diabetic macrovascular disease could expedite design of new vascular devices specifically tailored to diabetic patients. In contribution toward this model, this thesis assessed Human Umbilical Vein Endothelial Cell (HUVEC) responses to high glucose conditions. Interleukin 6 (IL-6) and Cluster of Differentiation 36 (CD36) were selected to signify oxidative stress activity, a hallmark of diabetic macrovascular disease. Next, activity of potential reference genes B2M, HPRT1, and ACTB was assessed. All genes were found to exceed acceptable variability, so the E-ΔC T method of data analysis was selected. Next, cellular responses to high …


Cortactin Phosphorylation By Casein Kinase 2 Regulates Actin Related Protein 2/3 Complex Activity And Invadopodia Function, Steven Michael Markwell Jan 2018

Cortactin Phosphorylation By Casein Kinase 2 Regulates Actin Related Protein 2/3 Complex Activity And Invadopodia Function, Steven Michael Markwell

Graduate Theses, Dissertations, and Problem Reports

Malregulation of the actin cytoskeleton enhances tumor cell motility and invasion. The actin-binding protein cortactin facilitates branched actin network formation through activation of the actin-related protein (Arp) 2/3 complex. Arp2/3 complex activation is responsible for driving increased migration and extracellular matrix (ECM) degradation by governing invadopodia formation and activity. While cortactin-mediated activation of Arp2/3 complex and invadopodia regulation has been well established, signaling pathways responsible for governing cortactin binding to Arp2/3 are unknown. In this dissertation we identify casein kinase (CK) 2α phosphorylation of cortactin as a negative regulator of Arp2/3 binding. CK2α directly phosphorylates cortactin at a conserved threonine …


Determination Of The Effects That A Previously Uncharacterized Secreted Product From Klebsiella Pneumoniae Has On Citrobacter Freundii And Enterobacter Cloacae Biofilms, Cody M. Hastings May 2017

Determination Of The Effects That A Previously Uncharacterized Secreted Product From Klebsiella Pneumoniae Has On Citrobacter Freundii And Enterobacter Cloacae Biofilms, Cody M. Hastings

Undergraduate Honors Theses

More so than ever, Multiple Drug Resistant (MDR) bacteria are on the rise due to overuse of antibiotics along with natural selection for adaptations that enhance drug-resistant properties. One particular bacterial family, Enterobacteriaceae, has been problematic, exhibiting several bacterial members that have developed a precipitous resistance to modern antibiotics and are also primary causative agents of nosocomial, or hospital acquired, infections. Citrobacter freundii (CF) and Enterobacter cloacae (ECL) are two species of the Enterobacteriaceae family causing significant medical concern due to their role in producing numerous opportunistic infections such as bacteremia, lower respiratory tract infections, urinary tract infections, and endocarditis. …


Mt1-Mmp Mediates The Migratory And Tumourigenic Potential Of Breast Cancer Cells Via Non-Proteolytic Mechanisms, Mario Cepeda Jan 2017

Mt1-Mmp Mediates The Migratory And Tumourigenic Potential Of Breast Cancer Cells Via Non-Proteolytic Mechanisms, Mario Cepeda

Electronic Thesis and Dissertation Repository

Membrane Type-1 Matrix Metalloproteinase (MT1-MMP) is a multifunctional protease that affects cell function via proteolytic and non-proteolytic mechanisms such as promoting degradation of the extracellular matrix (ECM) or augmentation of cell migration and viability, respectively. MT1-MMP has been implicated in metastatic progression ostensibly due to its ability to degrade ECM components and to allow migration of cells through the basement membrane. Despite in vitro studies demonstrating this principle, this knowledge has not translated into the use of MMP inhibitors (MMPi) that inhibit substrate catalysis as effective cancer therapeutics, or been corroborated by evidence of in vivo ECM degradation mediated by …


The Effect Of K562-Il21-2 Plasma Membrane Particles On The Proliferation Of Natural Killer Cells To Fight Cancer, Michelle Prophete Jan 2017

The Effect Of K562-Il21-2 Plasma Membrane Particles On The Proliferation Of Natural Killer Cells To Fight Cancer, Michelle Prophete

Honors Undergraduate Theses

Immunotherapy has emerged as a current and future paradigm of cancer treatment, which utilizes the body’s immune system to eradicate cancer. Natural Killer (NK) cells as part of the innate immune system have immense potential in their anti-tumor cytotoxic activities and host cell surveillance properties. NK cells comprise approximately five to fifteen percent of peripheral blood lymphocytes and can be proliferated in vitro using recently developed methods with co-cultures with feeder cells (derived from engineered tumor cells) or plasma membrane (PM) particles, produced from the fore mentioned feeder cells, in combination with soluble cytokines. For efficient growth and maintenance of …


Characterization Of Malt1 Inhibitors And Their Effect On Leukemic Cell Growth Properties, Christina Snyder Jan 2017

Characterization Of Malt1 Inhibitors And Their Effect On Leukemic Cell Growth Properties, Christina Snyder

Graduate School of Biomedical Sciences Theses and Dissertations

Leukemia is the most common childhood cancer, with a combined 40,000 predicted new cases in the United States in 2016 [8]. The two most common subtypes are acute myeloid leukemia (AML) and chronic lymphocytic leukemia (CLL) [9-11]. The commercially available inhibitor of Bruton’s tyrosine kinase (BTK) has shown promising results in clinical trials for CLL because of the importance of BCR signaling in CLL [12-15]. Recent studies suggest that the outgrowth of BTK inhibitor resistant clonal cells in some CLL patients results in a treatment-refractory phenotype [16-18]. MALT1, a protein involved in BCR activation of the NF-κB pathway that functions …


Utility And Origin Of Blood-Based Autoantibodies For Early Detection And Diagnosis Of Neurodegenerative Diseases, Cassandra Demarshall Jan 2016

Utility And Origin Of Blood-Based Autoantibodies For Early Detection And Diagnosis Of Neurodegenerative Diseases, Cassandra Demarshall

Graduate School of Biomedical Sciences Theses and Dissertations

Autoantibodies are self-reactive antibodies that have been widely implicated as causal agents of autoimmune diseases. They are found in the blood of all human sera, regardless of age, gender, or the presence or absence of disease. While the underlying reason for their ubiquity remains unknown, it has been hypothesized that they participate in the clearance of blood-borne cell and tissue debris generated in both healthy and diseased individuals on a daily basis. Although much evidence supports this debris clearance role, recent studies also suggest a causal role for autoantibodies in disease. My thesis work has focused on this "cause and/or …


Role Of Stat3 In Human Nk Cell Functions, Prasad V. Phatarpekar Dec 2015

Role Of Stat3 In Human Nk Cell Functions, Prasad V. Phatarpekar

Dissertations & Theses (Open Access)

Natural Killer (NK) cells are cytotoxic lymphocytes, which play a critical role in the immune response against malignant cells and microbial infections. NK cells are equipped with activating receptors, which upon detecting ligands expressed on stressed cells induce cytolytic activity of NK cells. Stimulation of NK cell proliferation and priming of NK cytolytic capability are accomplished by cytokines, which mediate their signals mainly through JAK-STAT signaling pathway. Previously, we found that K562 cells genetically modified to express membrane bound IL-21 (mbIL-21), which predominantly activates STAT3, induce robust expansion and activation of human NK cells. Further investigations revealed role of STAT3 …


Characterization Of The Nicotine-Induced Endoplasmic Reticulum Stress Response In The Rat Placenta In Vivo And In Vitro, Michael Ka Chun Wong Aug 2015

Characterization Of The Nicotine-Induced Endoplasmic Reticulum Stress Response In The Rat Placenta In Vivo And In Vitro, Michael Ka Chun Wong

Electronic Thesis and Dissertation Repository

Nicotine exposure during pregnancy leads to adverse health outcomes, including compromised placental development. Although the molecular mechanisms remain elusive, recent studies identified that endoplasmic reticulum (ER) stress may underlie poor placentation. Therefore, we were interested in investigating the effects of nicotine exposure on the ER stress response in the placenta. A well-established maternal nicotine exposure rat model and Rcho-1 trophoblast giant cell model were utilized to address the research questions. Maternal nicotine exposure in vivo led to elevated ER stress in association with impaired disulfide bond formation and hypoxia. Nicotine exposure in vitro further differentiated that ER stress may be …