Open Access. Powered by Scholars. Published by Universities.®

Cell and Developmental Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Cell and Developmental Biology

Serine-Dependent Sphingolipid Synthesis Is A Metabolic Liability Of Aneuploid Cells, Sunyoung Hwang, H. Tobias Gustafsson, Ciara O’Sullivan, Gianna Bisceglia, Xinhe Huang, Christian Klose, Andrej Schevchenko, Robert C. Dickson, Paola Cavaliere, Noah Dephoure, Eduardo M. Torres Dec 2017

Serine-Dependent Sphingolipid Synthesis Is A Metabolic Liability Of Aneuploid Cells, Sunyoung Hwang, H. Tobias Gustafsson, Ciara O’Sullivan, Gianna Bisceglia, Xinhe Huang, Christian Klose, Andrej Schevchenko, Robert C. Dickson, Paola Cavaliere, Noah Dephoure, Eduardo M. Torres

Molecular and Cellular Biochemistry Faculty Publications

Aneuploidy disrupts cellular homeostasis. However, the molecular mechanisms underlying the physiological responses and adaptation to aneuploidy are not well understood. Deciphering these mechanisms is important because aneuploidy is associated with diseases, including intellectual disability and cancer. Although tumors and mammalian aneuploid cells, including several cancer cell lines, show altered levels of sphingolipids, the role of sphingolipids in aneuploidy remains unknown. Here, we show that ceramides and long-chain bases, sphingolipid molecules that slow proliferation and promote survival, are increased by aneuploidy. Sphingolipid levels are tightly linked to serine synthesis, and inhibiting either serine or sphingolipid synthesis can specifically impair the fitness …


Exploring Cancer Metabolism Using Stable Isotope-Resolved Metabolomics (Sirm), Ronald C. Bruntz, Andrew N. Lane, Richard M. Higashi, Teresa W. -M. Fan Jun 2017

Exploring Cancer Metabolism Using Stable Isotope-Resolved Metabolomics (Sirm), Ronald C. Bruntz, Andrew N. Lane, Richard M. Higashi, Teresa W. -M. Fan

Center for Environmental and Systems Biochemistry Faculty Publications

Metabolic reprogramming is a hallmark of cancer. The changes in metabolism are adaptive to permit proliferation, survival, and eventually metastasis in a harsh environment. Stable isotope-resolved metabolomics (SIRM) is an approach that uses advanced approaches of NMR and mass spectrometry to analyze the fate of individual atoms from stable isotope-enriched precursors to products to deduce metabolic pathways and networks. The approach can be applied to a wide range of biological systems, including human subjects. This review focuses on the applications of SIRM to cancer metabolism and its use in understanding drug actions.


Lipid Sensing By Mammalian Target Of Rapamycin, Deepak Menon Feb 2017

Lipid Sensing By Mammalian Target Of Rapamycin, Deepak Menon

Dissertations, Theses, and Capstone Projects

Mammalian target of Rapamycin (mTOR) is a protein kinase that integrates nutrient and growth factor signals to promote cellular growth and proliferation. mTOR exists in two complexes - mTORC1 and mTORC2 that are distinguished by their binding partners and signaling inputs. mTORC1 is responsive to growth factors, amino acids and glucose and is associated with Raptor; whereas, mTORC2 is responsive primarily to growth factors and is associated with Rictor. Raptor and Rictor confer substrate specificity to mTORC1 and mTORC2 respectively. Phosphatidic acid (PA), a lipid second messenger and a central metabolite for membrane phospholipid biosynthesis, is required for the stability …