Open Access. Powered by Scholars. Published by Universities.®

Cell and Developmental Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Cell and Developmental Biology

Tox Regulates Growth, Dna Repair, And Genomic Instability In T-Cell Acute Lymphoblastic Leukemia, Riadh Lobbardi, Jordan Pinder, Barbara Martinez-Pastor, Marina Theodorou, Jessica S. Blackburn, Brian J. Abraham, Yuka Namiki, Marc Mansour, Nouran S. Abdelfattah, Aleksey Molodtsov, Gabriela Alexe, Debra Toiber, Manon De Waard, Esha Jain, Myriam Boukhali, Mattia Lion, Deepak Bhere, Khalid Shah, Alejandro Gutierrez, Kimberly Stegmaier, Lewis B. Silverman, Ruslan I. Sadreyev, John M. Asara, Marjorie A. Oettinger, Wilhelm Haas, A. Thomas Look, Richard A. Young, Raul Mostoslavsky, Graham Dellaire, David M. Langenau Nov 2017

Tox Regulates Growth, Dna Repair, And Genomic Instability In T-Cell Acute Lymphoblastic Leukemia, Riadh Lobbardi, Jordan Pinder, Barbara Martinez-Pastor, Marina Theodorou, Jessica S. Blackburn, Brian J. Abraham, Yuka Namiki, Marc Mansour, Nouran S. Abdelfattah, Aleksey Molodtsov, Gabriela Alexe, Debra Toiber, Manon De Waard, Esha Jain, Myriam Boukhali, Mattia Lion, Deepak Bhere, Khalid Shah, Alejandro Gutierrez, Kimberly Stegmaier, Lewis B. Silverman, Ruslan I. Sadreyev, John M. Asara, Marjorie A. Oettinger, Wilhelm Haas, A. Thomas Look, Richard A. Young, Raul Mostoslavsky, Graham Dellaire, David M. Langenau

Molecular and Cellular Biochemistry Faculty Publications

T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive malignancy of thymocytes. Using a transgenic screen in zebrafish, thymocyte selection–associated high mobility group box protein (TOX) was uncovered as a collaborating oncogenic driver that accelerated T-ALL onset by expanding the initiating pool of transformed clones and elevating genomic instability. TOX is highly expressed in a majority of human T-ALL and is required for proliferation and continued xenograft growth in mice. Using a wide array of functional analyses, we uncovered that TOX binds directly to KU70/80 and suppresses recruitment of this complex to DNA breaks to inhibit nonhomologous end joining (NHEJ) repair. …


The Dlk1-Meg3 Locus In Malignant Cells Of Proposed Primordial Germ Cell Origins., Zachariah Payne Sellers Aug 2017

The Dlk1-Meg3 Locus In Malignant Cells Of Proposed Primordial Germ Cell Origins., Zachariah Payne Sellers

Electronic Theses and Dissertations

Primordial germ cells (PGCs) are hypothesized to deposit hematopoietic stem cells (HSCs) along their migration route through the embryo during the early stages of embryogenesis. PGCs also undergo global chromatin remodeling, including the erasure and reestablishment of genomic imprints, during this migration. While PGCs do not spontaneously form teratomas, their malignant development into germ cell tumors (GCTs) in vivo is often accompanied by the retention of hypomethylation at the IGF2-H19 imprinting control differentially methylated region (DMR). Previous studies in bimaternal embryos determined that proper genomic imprinting at two paternally imprinted loci was necessary for their growth and development: Igf2-H19 and …


Investigating The Synergistic Effects Of Cisplatin And Two Curcuminoid Compounds On Cancer, Denis Hodzic Jun 2017

Investigating The Synergistic Effects Of Cisplatin And Two Curcuminoid Compounds On Cancer, Denis Hodzic

Mahurin Honors College Capstone Experience/Thesis Projects

Cisplatin is an anti-cancer drug effective against several cancers which can produce the serious side-effect of hearing loss. Curcumin, a natural plant compound, can increase the activity of cisplatin against cancer and counteract cisplatin’s effect against hearing. Because curcumin exhibits poor bioavailability, there is considerable interest in developing synthetic curcumin analogs (curcuminoids) that are more soluble and which retain anti-cancer activity and otoprotective function. This study investigated whether two curcuminoids, EF-24 and CLEFMA, increase the cytotoxic and ototoxic effects of cisplatin against the lung cancer cell line, A549, and the colorectal cancer cell line, Caco2. Cytotoxicity was measured by using …


Exploring Cancer Metabolism Using Stable Isotope-Resolved Metabolomics (Sirm), Ronald C. Bruntz, Andrew N. Lane, Richard M. Higashi, Teresa W. -M. Fan Jun 2017

Exploring Cancer Metabolism Using Stable Isotope-Resolved Metabolomics (Sirm), Ronald C. Bruntz, Andrew N. Lane, Richard M. Higashi, Teresa W. -M. Fan

Center for Environmental and Systems Biochemistry Faculty Publications

Metabolic reprogramming is a hallmark of cancer. The changes in metabolism are adaptive to permit proliferation, survival, and eventually metastasis in a harsh environment. Stable isotope-resolved metabolomics (SIRM) is an approach that uses advanced approaches of NMR and mass spectrometry to analyze the fate of individual atoms from stable isotope-enriched precursors to products to deduce metabolic pathways and networks. The approach can be applied to a wide range of biological systems, including human subjects. This review focuses on the applications of SIRM to cancer metabolism and its use in understanding drug actions.


Investigating The Essential Roles Of Dprl-1 In Drosophila Melanogaster, Alex Lee Jan 2017

Investigating The Essential Roles Of Dprl-1 In Drosophila Melanogaster, Alex Lee

Summer Research

Phosphatase of Regenerating Liver (PRL) proteins regulate a number of important cellular processes, including cell growth and division. Humans have three PRL proteins: PRL-1, PRL-2, and PRL-3. An accumulation of evidence has shown that elevated levels of PRLs are strongly correlated with uncontrollable growth and metastasis of tumors. However, contradictory findings have arisen indicating that PRLs instead function to halt cell division thereby preventing uncontrollable tumor growth. In light of these results, the underlying mechanisms regarding how PRLs function within cellular processes remains unclear. To investigate the functions of PRLs, we will create transgenic fruit flies (Drosophila melanogaster) …


The E. Coli Protein Ybgl: A Novel Dna Repair Enzyme?, Mason H. Conen, Brooke D. Martin, Kent Sugden, Savannah Whitfield Jan 2017

The E. Coli Protein Ybgl: A Novel Dna Repair Enzyme?, Mason H. Conen, Brooke D. Martin, Kent Sugden, Savannah Whitfield

Undergraduate Theses, Professional Papers, and Capstone Artifacts

Cr(V) is a carcinogen that oxidizes guanine aggressively to form spiroiminodihydantion (Sp) and guanidinohydantoin (Gh), both of which contain an unusual hydantoin moiety that cause G→T transversion mutations at a high rate. Endonuclease VIII (nei) can recognize and excise these oxidation products from DNA and is translated as one of five protein products of the Nei operon in Escherichia coli (E. coli). However, the functions of the other four proteins remain unknown. To address this gap in knowledge, we focused on one of the four that immediately precedes nei, the ybgL protein. Previous work by our group has suggested a …