Open Access. Powered by Scholars. Published by Universities.®

Cell and Developmental Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Cell and Developmental Biology

An Inositolphosphorylceramide Synthase Is Involved In Regulation Of Plant Programmed Cell Death Associated With Defense In Arabidopsis, Wenming Wang, Xiaohua Yang, Samantha Tangchiaburana, Roland Ndeh, Jennifer E. Markham, Yoseph Tsegaye, Teresa M. Dunn, Guo-Liang Wang, Maria Bellizzi, James F. Parsons, Danielle Morrissey, Janis E. Bravo, Daniel V. Lynch, Shunyuan Xiao Nov 2008

An Inositolphosphorylceramide Synthase Is Involved In Regulation Of Plant Programmed Cell Death Associated With Defense In Arabidopsis, Wenming Wang, Xiaohua Yang, Samantha Tangchiaburana, Roland Ndeh, Jennifer E. Markham, Yoseph Tsegaye, Teresa M. Dunn, Guo-Liang Wang, Maria Bellizzi, James F. Parsons, Danielle Morrissey, Janis E. Bravo, Daniel V. Lynch, Shunyuan Xiao

Department of Biochemistry: Faculty Publications

The Arabidopsis thaliana resistance gene RPW8 triggers the hypersensitive response (HR) to restrict powdery mildew infection via the salicylic acid–dependent signaling pathway. To further understand how RPW8 signaling is regulated, we have conducted a genetic screen to identify mutations enhancing RPW8-mediated HR-like cell death (designated erh). Here, we report the isolation and characterization of the Arabidopsis erh1 mutant, in which the At2g37940 locus is knocked out by a T-DNA insertion. Loss of function of ERH1 results in salicylic acid accumulation, enhanced transcription of RPW8 and RPW8-dependent spontaneous HR-like cell death in leaf tissues, and reduction in plant stature. …


Intraretinal Signaling By Ganglion Cell Photoreceptors To Dopaminergic Amacrine Neurons, Dao-Qi Zhang, Kwoon Y. Wong, Patricia J. Sollars, David M. Berson, Gary E. Pickard, Douglas G. Mcmahon Sep 2008

Intraretinal Signaling By Ganglion Cell Photoreceptors To Dopaminergic Amacrine Neurons, Dao-Qi Zhang, Kwoon Y. Wong, Patricia J. Sollars, David M. Berson, Gary E. Pickard, Douglas G. Mcmahon

School of Veterinary and Biomedical Sciences: Faculty Publications

Retinal dopaminergic amacrine neurons (DA neurons) play a central role in reconfiguring retinal function according to prevailing illumination conditions, yet the mechanisms by which light regulates their activity are poorly understood. We investigated the means by which sustained light responses are evoked in DA neurons. Sustained light responses were driven by cationic currents and persisted in vitro and in vivo in the presence of L-AP4, a blocker of retinal ON-bipolar cells. Several characteristics of these L-AP4-resistant light responses suggested that they were driven by melanopsin-expressing intrinsically photosensitive retinal ganglion cells (ipRGCs), including long latencies, marked poststimulus persistence, and a peak …


Regulation Of The Bioavailability Of Thioredoxin In The Lens By A Specific Thioredoxin-Binding Protein (Tbp-2), Namal P.M. Liyanage, M. Rohan Fernando, Marjorie F. Lou Aug 2008

Regulation Of The Bioavailability Of Thioredoxin In The Lens By A Specific Thioredoxin-Binding Protein (Tbp-2), Namal P.M. Liyanage, M. Rohan Fernando, Marjorie F. Lou

School of Veterinary and Biomedical Sciences: Faculty Publications

Thioredoxin (TRx) is known to control redox homeostasis in cells. In recent years, a specific TRx binding protein called thioredoxin binding protein-2 (TBP-2) was found in other cell types and it appeared to negatively regulate TRx bioavailability and thereby control TRx biological function. In view of the sensitivity of lens transparency to redox status, proper regulation of TRx bioavailability is of the utmost importance. This study was conducted to examine the presence and function of TBP-2 in human lens epithelial cells (HLE B3). We cloned human lens TBP-2 from a human cDNA library (GenBank accession number AY 594328) and showed …