Open Access. Powered by Scholars. Published by Universities.®

Cell and Developmental Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Animal Experimentation and Research

Chapman University

Cilia

Publication Year

Articles 1 - 3 of 3

Full-Text Articles in Cell and Developmental Biology

Brain Microvascular Endothelial Cells Possess A Second Cilium That Arises From The Daughter Centriole, Karthikeyan Thirugnanam, Ankan Gupta, Francisco Nunez, Shubhangi Prabhudesai, Amy Y. Pan, Surya M. Nauli, Ramani Ramchandran Nov 2023

Brain Microvascular Endothelial Cells Possess A Second Cilium That Arises From The Daughter Centriole, Karthikeyan Thirugnanam, Ankan Gupta, Francisco Nunez, Shubhangi Prabhudesai, Amy Y. Pan, Surya M. Nauli, Ramani Ramchandran

Pharmacy Faculty Articles and Research

Primary cilia from the brain microvascular endothelial cells (ECs) are specialized cell-surface organelles involved in mediating sensory perception, cell signaling, and vascular stability. Immunofluorescence (IF) analysis of human primary brain microvascular ECs reveals two cilia per cell. To confirm the in vitro observation of the two-cilia phenotype in human primary brain ECs, ECs isolated from mouse brain were cultured and stained for cilium. Indeed, brain ECs from a ciliopathic mouse (polycystic kidney disease or Pkd2−/−) also possess more than one cilium. Primary cilium emerges from the mother centriole. Centriole analysis by IF suggests that in brain ECs, markers …


Ciliogenesis Mechanisms Mediated By Pak2-Arl13b Signaling In Brain Endothelial Cells Is Responsible For Vascular Stability, Karthikeyan Thirugnanam, Shubhangi Prabhudesai, Emma Van Why, Amy Pan, Ankan Gupta, Koji Foreman, Rahima Zennadi, Kevin R. Rarick, Surya M. Nauli, Sean P. Palacek, Ramani Ramchandran Jun 2022

Ciliogenesis Mechanisms Mediated By Pak2-Arl13b Signaling In Brain Endothelial Cells Is Responsible For Vascular Stability, Karthikeyan Thirugnanam, Shubhangi Prabhudesai, Emma Van Why, Amy Pan, Ankan Gupta, Koji Foreman, Rahima Zennadi, Kevin R. Rarick, Surya M. Nauli, Sean P. Palacek, Ramani Ramchandran

Pharmacy Faculty Articles and Research

In the developing vasculature, cilia, microtubule-based organelles that project from the apical surface of endothelial cells (ECs), have been identified to function cell autonomously to promote vascular integrity and prevent hemorrhage. To date, the underlying mechanisms of endothelial cilia formation (ciliogenesis) are not fully understood. Understanding these mechanisms is likely to open new avenues for targeting EC-cilia to promote vascular stability. Here, we hypothesized that brain ECs ciliogenesis and the underlying mechanisms that control this process are critical for brain vascular stability. To investigate this hypothesis, we utilized multiple approaches including developmental zebrafish model system and primary cell culture systems. …


Regulation Of Brain Primary Cilia Length By Mch Signaling: Evidence From Pharmacological, Genetic, Optogenetic, And Chemogenic Manipulations, Wedad Alhassen, Yuki Kobayashi, Jessica Su, Brianna Robbins, Henry Nguyen, Thant Myint, Micah Yu, Surya M. Nauli, Yumiko Saito, Amal Alachkar Oct 2021

Regulation Of Brain Primary Cilia Length By Mch Signaling: Evidence From Pharmacological, Genetic, Optogenetic, And Chemogenic Manipulations, Wedad Alhassen, Yuki Kobayashi, Jessica Su, Brianna Robbins, Henry Nguyen, Thant Myint, Micah Yu, Surya M. Nauli, Yumiko Saito, Amal Alachkar

Pharmacy Faculty Articles and Research

The melanin-concentrating hormone (MCH) system is involved in numerous functions, including energy homeostasis, food intake, sleep, stress, mood, aggression, reward, maternal behavior, social behavior, and cognition. In rodents, MCH acts on MCHR1, a G protein-coupled receptor, which is widely expressed in the brain and abundantly localized to neuronal primary cilia. Cilia act as cells’ antennas and play crucial roles in cell signaling to detect and transduce external stimuli to regulate cell differentiation and migration. Cilia are highly dynamic in terms of their length and morphology; however, it is not known if cilia length is causally regulated by MCH system activation …