Open Access. Powered by Scholars. Published by Universities.®

Cell and Developmental Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Cell and Developmental Biology

Brain Microvascular Endothelial Cells Possess A Second Cilium That Arises From The Daughter Centriole, Karthikeyan Thirugnanam, Ankan Gupta, Francisco Nunez, Shubhangi Prabhudesai, Amy Y. Pan, Surya M. Nauli, Ramani Ramchandran Nov 2023

Brain Microvascular Endothelial Cells Possess A Second Cilium That Arises From The Daughter Centriole, Karthikeyan Thirugnanam, Ankan Gupta, Francisco Nunez, Shubhangi Prabhudesai, Amy Y. Pan, Surya M. Nauli, Ramani Ramchandran

Pharmacy Faculty Articles and Research

Primary cilia from the brain microvascular endothelial cells (ECs) are specialized cell-surface organelles involved in mediating sensory perception, cell signaling, and vascular stability. Immunofluorescence (IF) analysis of human primary brain microvascular ECs reveals two cilia per cell. To confirm the in vitro observation of the two-cilia phenotype in human primary brain ECs, ECs isolated from mouse brain were cultured and stained for cilium. Indeed, brain ECs from a ciliopathic mouse (polycystic kidney disease or Pkd2−/−) also possess more than one cilium. Primary cilium emerges from the mother centriole. Centriole analysis by IF suggests that in brain ECs, markers …


Primary Cilia Of The Cardiac Neural Crest & Hedgehog-Mediated Mechanisms Of Congenital Heart Disease, Lindsey A. Fitzsimons May 2022

Primary Cilia Of The Cardiac Neural Crest & Hedgehog-Mediated Mechanisms Of Congenital Heart Disease, Lindsey A. Fitzsimons

Electronic Theses and Dissertations

Elimination of primary cilia in cardiac neural crest cell (CNCC) progenitors is hypothesized to cause a variety of congenital heart defects (CHDs), including atrioventricular septal defects, and malformations of the developing cardiac outflow tract. We present an in vivo model of CHD resulting from the conditional elimination of primary cilia from CNCC using multiple, Wnt1:Cre-loxP, neural crest-specific systems, targeting two distinctive, but critical, primary cilia structural genes: Intraflagellar transport protein 88 (Ift88) or kinesin family member 3A (Kif3a). CNCC loss of primary cilia leads to widespread CHD, where homozygous mutant embryos (MUT) display a variety of outflow tract malformations, septation …


Spag17 Deficiency Impairs Neuronal Cell Differentiation In Developing Brain, Olivia J. Choi Jan 2019

Spag17 Deficiency Impairs Neuronal Cell Differentiation In Developing Brain, Olivia J. Choi

Theses and Dissertations

The development of the nervous system is a multi-level, time-sensitive process that relies heavily on cell differentiation. However, the molecular mechanisms that control brain development remain poorly understood. We generated a knockout (KO) mouse for the cilia associated gene Spag17. These animals develop hydrocephalus and enlarged ventricles consistent with the role of Spag17 in the motility of ependymal cilia. However, other phenotypes that cannot be explained by this role were also present. Recently, a mutation in Spag17 has been associated with brain malformations and severe intellectual disability in humans. Therefore, we hypothesized that Spag17 plays a crucial role in …


Genetic Analysis Reveals A Hierarchy Of Interactions Between Polycystin-Encoding Genes And Genes Controlling Cilia Function During Left-Right Determination, Daniel T. Grimes, Jennifer L. Keynton, Maria T. Buenavista, Xingjian Jin, Saloni H. Patel, Shinohara Kyosuke, Jennifer Vibert, Debbie J. Williams, Hiroshi Hamada, Rohana Hussain, Surya M. Nauli, Dominic P. Norris Jun 2016

Genetic Analysis Reveals A Hierarchy Of Interactions Between Polycystin-Encoding Genes And Genes Controlling Cilia Function During Left-Right Determination, Daniel T. Grimes, Jennifer L. Keynton, Maria T. Buenavista, Xingjian Jin, Saloni H. Patel, Shinohara Kyosuke, Jennifer Vibert, Debbie J. Williams, Hiroshi Hamada, Rohana Hussain, Surya M. Nauli, Dominic P. Norris

Pharmacy Faculty Articles and Research

During mammalian development, left-right (L-R) asymmetry is established by a cilia-driven leftward fluid flow within a midline embryonic cavity called the node. This ‘nodal flow’ is detected by peripherally-located crown cells that each assemble a primary cilium which contain the putative Ca2+ channel PKD2. The interaction of flow and crown cell cilia promotes left side-specific expression of Nodal in the lateral plate mesoderm (LPM). Whilst the PKD2-interacting protein PKD1L1 has also been implicated in L-R patterning, the underlying mechanism by which flow is detected and the genetic relationship between Polycystin function and asymmetric gene expression remains unknown. Here, we …


Chemical-Free Technique To Study The Ultrastructure Of Primary Cilium, Ashraf M. Mohieldin, Wissam A. Aboualaiwi, Min Gao, Surya M. Nauli Nov 2015

Chemical-Free Technique To Study The Ultrastructure Of Primary Cilium, Ashraf M. Mohieldin, Wissam A. Aboualaiwi, Min Gao, Surya M. Nauli

Pharmacy Faculty Articles and Research

A primary cilium is a hair-like structure with a width of approximately 200 nm. Over the past few decades, the main challenge in the study of the ultrastructure of cilia has been the high sensitivity of cilia to chemical fixation, which is required for many imaging techniques. In this report, we demonstrate a combined high-pressure freezing (HPF) and freeze-fracture transmission electron microscopy (FFTEM) technique to examine the ultrastructure of a cilium. Our objective is to develop an optimal high-resolution imaging approach that preserves cilia structures in their best natural form without alteration of cilia morphology by chemical fixation interference. Our …