Open Access. Powered by Scholars. Published by Universities.®

Cell and Developmental Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Cell and Developmental Biology

Programming Heart Disease: Does Poor Maternal Nutrition Alter Expression Of Cardiac Markers Of Proliferation, Hypertrophy, And Fibrosis In Offspring?, Cathy Chun May 2016

Programming Heart Disease: Does Poor Maternal Nutrition Alter Expression Of Cardiac Markers Of Proliferation, Hypertrophy, And Fibrosis In Offspring?, Cathy Chun

Honors Scholar Theses

Maternal malnutrition can affect fetal organogenesis, metabolic processes, and factors involved in developmental regulation. Of the many physiological effects poor maternal nutrition can induce in offspring, one of the most important organs affected is the heart. Cardiovascular disease has been associated with poor maternal diet. It also been suggested that hypertension can originate during impaired intrauterine growth and development. Hypertension can trigger hypertensive heart disease and is associated with numerous heart complications. We hypothesized that poor maternal nutrition would alter critical growth factors associated with normal heart development, specifically, insulin-like growth factor (IGF)-1, IGF-2, transforming growth factor (TGF)β, and connective …


Development Of Vip-Sst Interneuron Associations In Mouse Neocortex And Entorhinal Cortex, Aayushi A. Mehta May 2016

Development Of Vip-Sst Interneuron Associations In Mouse Neocortex And Entorhinal Cortex, Aayushi A. Mehta

Honors Scholar Theses

Cortical networks depend upon inhibition through the neurotransmitter GABA to control and coordinate specific spatiotemporal circuit patterns, underlying the exquisite complexity of neural signaling. Disinhibition, a form of inhibition where inhibitory neurons inhibit other inhibitory cells, further aids in amplifying local neural processing in a selective, organized manner. A subset of GABAergic interneurons, vasoactive intestinal peptide-expressing (VIP) cells, preferentially inhibit somatostatin interneurons, which provide inhibitory input onto pyramidal cells, thus creating an archetypal circuit illustrating disinhibition in the cortex. The aim of this anatomical study was to investigate variations in GABAergic VIP synapses onto somatostatin-expressing inhibitory interneurons in mice at …