Open Access. Powered by Scholars. Published by Universities.®

Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 19 of 19

Full-Text Articles in Biology

Ankyrin Dependent Mitochondrial Function And Bioenergetics In The Heart, Janani Subramaniam, Janani Subramaniam Dec 2022

Ankyrin Dependent Mitochondrial Function And Bioenergetics In The Heart, Janani Subramaniam, Janani Subramaniam

Dissertations & Theses (Open Access)

ANK2 mutations in patients are associated with numerous arrhythmias, cardiomyopathies, and other heart defects. In the heart, AnkB, the protein encoded by ANK2, clusters relevant ion channels and cell adhesion molecules in several important domains; however, its role at Mitochondria Associated ER/SR Membranes (MAMs) has yet to be investigated. MAMs are crucial to mitochondrial function and metabolism and are signaling hubs implicated in various cardiac pathologies. Among several functions, these sites mediate the direct transfer of calcium from the ER/SR to the mitochondria to modulate ATP synthesis. Given that mitochondrial function and energy production are paramount to cardiovascular heath, …


Circadian Clock Controls Rhythms In Ketogenesis By Interfering With Ppar Alpha Transcriptional Network, Volha Mezhnina, Oghogho P. Ebeigbe, Nikkhil Velingkaar, Allan Poe, Yana I. Sandlers, Roman Kondratov Sep 2022

Circadian Clock Controls Rhythms In Ketogenesis By Interfering With Ppar Alpha Transcriptional Network, Volha Mezhnina, Oghogho P. Ebeigbe, Nikkhil Velingkaar, Allan Poe, Yana I. Sandlers, Roman Kondratov

Biological, Geological, and Environmental Faculty Publications

Ketone bodies are energy-rich metabolites and signaling molecules whose production is mainly regulated by diet. Caloric restriction (CR) is a dietary intervention that improves metabolism and extends longevity across the taxa. We found that CR induced high -amplitude daily rhythms in blood ketone bodies (beta-hydroxybutyrate [beta OHB]) that correlated with liver beta OHB level. Time-restricted feeding, another periodic fasting-based diet, also led to rhythmic beta OHB but with reduced amplitude. CR induced strong circadian rhythms in the expression of fatty acid oxidation and ketogenesis genes in the liver. The transcriptional factor peroxisome-proliferator-activated-receptor alpha (PPAR alpha) and its transcriptional target hepatokine …


Eluication Of Lipid Metabolic Pathways In Differentiating Giardia Lamblia Using High Resolution Mass Spectrometry, Cameron Ellis Aug 2022

Eluication Of Lipid Metabolic Pathways In Differentiating Giardia Lamblia Using High Resolution Mass Spectrometry, Cameron Ellis

Open Access Theses & Dissertations

Giardia lamblia is an intestinal protozoan found worldwide, including the U.S. This parasite exists in two morphologic stages - a replicative trophozoite and a relatively dormant yet viable cyst. While exposures of cysts to gastric acid during passage through the human stomach induces excystation, factors in the small intestine, where trophozoites colonize trigger encystation or cyst formation. Transformation into cyst stage is essential for Giardia to survive in the environment for months before infecting new hosts. Because of its small genome size (11.7 Mb), metabolic pathways in Giardia are highly reduced. As far as lipid metabolism is concerned, only limited …


Elucidating The Effects Of Glucose Toxicity On Tauopathy And Aging, Lukas Fluitt May 2020

Elucidating The Effects Of Glucose Toxicity On Tauopathy And Aging, Lukas Fluitt

Natural Sciences and Mathematics | Biological Sciences Master's Theses

Diabetes patients are at higher risk of contracting an age-related neurodegenerative disease such as Alzheimer’s disease (AD). However, the mechanisms which link these diseases are poorly understood. We hypothesize that glucose and elevated levels of the glycolysis by product advanced glycation end-products (AGEs), may be involved. AGEs accumulate with age and are elevated in both diabetic and AD patients. Diabetes is a metabolic disorder for which consumption of sugar-rich diets is a major risk factor and is central to etiology in the vast majority of cases.

We show that transgenic C. elegans expressing wild type (WT) human tau fed a …


Novel Insights Into The Critical Role Of Cardiolipin In Cellular Metabolism And Mitochondrial Physiology, Jiajia Ji Jan 2020

Novel Insights Into The Critical Role Of Cardiolipin In Cellular Metabolism And Mitochondrial Physiology, Jiajia Ji

Wayne State University Dissertations

Cardiolipin (CL) is the signature phospholipid of mitochondria. CL and its remodeling exert critical roles in biological processes both inside and outside of mitochondria. CL abnormalities have been associated with various mitochondrial disorders and aging. Understanding the role of CL in mitochondrial physiology and cellular metabolism could provide valuable insights into cell biology and human health. Several metabolic alterations have been reported in CL-deficient cells, including accumulated lactate, decreased PDH activity, and decreased TCA cycle function. This dissertation connected these findings by showing abnormal NAD+ metabolism in various models lacking CL. Importantly, it shows that NAD+ supplementation improves mitochondrial function …


The Effects Of Induced Polycystic Ovary Syndrome In Nag-1 Transgenic Mice, Nicholas Werner Jan 2020

The Effects Of Induced Polycystic Ovary Syndrome In Nag-1 Transgenic Mice, Nicholas Werner

All Master's Theses

Polycystic ovary syndrome (PCOS) is the leading cause of infertility among women in the US and the most common endocrine disorder among women. PCOS is characterized by cystic ovaries, hyperandrogenism (heightened levels of male sex hormones), altered menstrual cycles and various metabolic dysfunctions. The metabolic symptoms associated with PCOS are difficult to treat, as they are a result of hormonal imbalances, rather than diet. The human Non-Steroidal Anti-Inflammatory Drug Activated Gene (NAG-1) been shown to prevent diet-induced metabolic disorders and weight gain in mice. We hypothesized that the expression of NAG-1 may also prevent hormonal-induced metabolic disorders. To test this …


The Effects Of Inulin And Galactooligosaccharides On The Production Of Reuterin By Lactobacillus Reuteri, Micah Dwight Forshee Dec 2018

The Effects Of Inulin And Galactooligosaccharides On The Production Of Reuterin By Lactobacillus Reuteri, Micah Dwight Forshee

ELAIA

The microbiome is a dynamic community that can positively and negatively influence host health. Lactobacillus reuteri is a probiotic that has received much attention for its ability to inhibit pathogens such as Salmonella typhimurium, Escherichia coli, and Clostridium difficile. It does so by its unique ability to metabolize glycerol into the antimicrobial compound 3-HPA, which is commonly referred to as reuterin. The ability to secrete reuterin is dependent not only on glycerol availability but also the concentration of glucose. In fact, there appears to be a “goldilocks” ratio between glucose and glycerol as either too much or too little …


The Effects Of Inulin And Galactooligosaccharides On The Production Of Reuterin By Lactobacillus Reuteri, Micah Forshee May 2018

The Effects Of Inulin And Galactooligosaccharides On The Production Of Reuterin By Lactobacillus Reuteri, Micah Forshee

Honors Program Projects

The microbiome is a dynamic community that can positively and negatively influence host health. Lactobacillus reuteri is a probiotic that has received much attention for its ability to inhibit pathogens such as Salmonella Typhimurium, Escherichia coli, and Clostridium difficile. It does so by its unique ability to metabolize glycerol into the antimicrobial compound 3-HPA, which is commonly referred to as reuterin. The ability to secrete reuterin is dependent not only on glycerol availability but also the concentration of glucose. In fact, there appears to be a “goldilocks” ratio between glucose and glycerol as either too much or too …


The Effects Of Inulin And Galactooligosaccharides On The Production Of Reuterin By Lactobacillus Reuteri, Micah Forshee Apr 2018

The Effects Of Inulin And Galactooligosaccharides On The Production Of Reuterin By Lactobacillus Reuteri, Micah Forshee

Scholar Week 2016 - present

The microbiome is a dynamic community that can positively and negatively influence host health. Lactobacillus reuteri is a probiotic that has received much attention for its ability to inhibit pathogens such as Salmonella Typhimurium, Escherichia coli, and Clostridium difficile. It does so by its unique ability to metabolize glycerol into the antimicrobial compound 3-HPA, which is commonly referred to as reuterin. The ability to secrete reuterin is dependent not only on glycerol availability but also the concentration of glucose. In fact, there appears to be a “goldilocks” ratio between glucose and glycerol as either too much or too …


Regulation Of Liver Mitochondrial Metabolism During Hibernation By Post-Translational Modification, Katherine E. Mathers Dec 2017

Regulation Of Liver Mitochondrial Metabolism During Hibernation By Post-Translational Modification, Katherine E. Mathers

Electronic Thesis and Dissertation Repository

Hibernation, characterized by a seasonal reduction in metabolism and body temperature, allows animals to conserve energy when environmental conditions (e.g. temperature, food availability) are unfavourable. During hibernation, small mammals such as the 13-lined ground squirrel (Ictidomys tridecemlineatus) cycle between two distinct metabolic states: torpor, where metabolic rate is suppressed by >95% and body temperature falls to ~5 °C, and interbout euthermia (IBE), where metabolic rate and body temperature rapidly increase and are maintained at euthermic levels several hours. Suppression of metabolism during entrance into torpor is paralleled by rapid suppression of liver mitochondrial metabolism. In my thesis, I …


Normal Glycolytic Enzyme Activity Is Critical For Hypoxia Inducible Factor-1a Activity And Provides Novel Targets For Inhibiting Tumor Growth, Geoffrey Grandjean Phd Dec 2015

Normal Glycolytic Enzyme Activity Is Critical For Hypoxia Inducible Factor-1a Activity And Provides Novel Targets For Inhibiting Tumor Growth, Geoffrey Grandjean Phd

Dissertations & Theses (Open Access)

Normal Glycolytic Enzyme Activity is Critical for Hypoxia Inducible Factor-1α Activity and Provides Novel Targets for Inhibiting Tumor Growth

By Geoffrey Grandjean

Advisory Professor: Garth Powis, D. Phil

Unique to proliferating cancer cells is the observation that their increased need for energy is provided by a high rate of glycolysis followed by lactic acid fermentation in a process known as the Warburg Effect, a process many times less efficient than oxidative phosphorylation employed by normal cells to satisfy a similar energy demand [1]. This high rate of glycolysis occurs regardless of the concentration of oxygen in the cell and …


A Distinct Tethering Step Is Vital For Vacuole Membrane Fusion, Michael Zick, William T. Wickner Sep 2014

A Distinct Tethering Step Is Vital For Vacuole Membrane Fusion, Michael Zick, William T. Wickner

Dartmouth Scholarship

Past experiments with reconstituted proteoliposomes, employing assays that infer membrane fusion from fluorescent lipid dequenching, have suggested that vacuolar SNAREs alone suffice to catalyze membrane fusion in vitro. While we could replicate these results, we detected very little fusion with the more rigorous assay of lumenal compartment mixing. Exploring the discrepancies between lipid-dequenching and content-mixing assays, we surprisingly found that the disposition of the fluorescent lipids with respect to SNAREs had a striking effect. Without other proteins, the association of SNAREs in trans causes lipid dequenching that cannot be ascribed to fusion or hemifusion. Tethering of the SNARE-bearing proteoliposomes was …


Antimicrobial And Antiinsectan Phenolic Metabolites Of Dalea Searlsiae, Gil Belofsky, Mario Aronica, Eric Foss, Jane Diamond, Felipe Santana, Jacob Darley, Patrick F. Dowd, Christina M. Coleman, Daneel Ferreira Apr 2014

Antimicrobial And Antiinsectan Phenolic Metabolites Of Dalea Searlsiae, Gil Belofsky, Mario Aronica, Eric Foss, Jane Diamond, Felipe Santana, Jacob Darley, Patrick F. Dowd, Christina M. Coleman, Daneel Ferreira

All Faculty Scholarship for the College of the Sciences

Continued interest in the chemistry of Dalea spp. led to investigation of Dalea searlsiae, a plant native to areas of the western United States. Methanol extractions of D. searlsiae roots and subsequent chromatographic fractionation afforded the new prenylated and geranylated flavanones malheurans A–D (14) and known flavanones (5 and 6). Known rotenoids (7 and 8) and isoflavones (9 and 10) were isolated from aerial portions. Structure determination of pure compounds was accomplished primarily by extensive 1D- and 2D-NMR spectroscopy. The absolute configurations of compounds 15, 7 …


Metabolic Checkpoints In Cancer Cell Cycle, Mahesh Saqcena Feb 2014

Metabolic Checkpoints In Cancer Cell Cycle, Mahesh Saqcena

Dissertations, Theses, and Capstone Projects

Growth factors (GFs) as well as nutrient sufficiency regulate cell division in metazoans. The vast majority of mutations that contribute to cancer are in genes that regulate progression through the G1 phase of the cell cycle. A key regulatory site in G1 is the growth factor-dependent Restriction Point (R), where cells get permissive signals to divide. In the absence of GF instructions, cells enter the quiescent G0 state. Despite fundamental differences between GF signaling and nutrient sensing, they both have been confusingly referred to as R and therefore by definition considered to be a singular event in G1. Autonomy from …


Lipid Dependence In Ras-Driven Tumors, Darin Salloum Feb 2014

Lipid Dependence In Ras-Driven Tumors, Darin Salloum

Dissertations, Theses, and Capstone Projects

Over past decade, metabolic alterations in cancer cells have received a substantial amount of interest. It had been established that cancer cells undergo a significant amount of metabolic alterations, and some of these alterations are similar to those in normal highly proliferative cells. However, it is becoming more apparent that many of the metabolic alterations are specific to particular oncogenic signaling pathways. Although altered metabolic machinery makes cancer cells more efficient at promoting growth when nutrients are supplied at the sufficient amounts, the dependency of cancer cells on particular metabolic reprogramming deems cancer cells susceptible to disruptions within metabolic network. …


Excision Dynamics Of Vibrio Pathogenicity Island-2 From Vibrio Cholerae: Role Of A Recombination Directionality Factor Vefa, Salvador Almagro-Moreno, Michael G. Napolitano, E. Fidelma Boyd Nov 2010

Excision Dynamics Of Vibrio Pathogenicity Island-2 From Vibrio Cholerae: Role Of A Recombination Directionality Factor Vefa, Salvador Almagro-Moreno, Michael G. Napolitano, E. Fidelma Boyd

Dartmouth Scholarship

Vibrio Pathogenicity Island-2 (VPI-2) is a 57 kb region present in choleragenic V. cholerae isolates that is required for growth on sialic acid as a sole carbon source. V. cholerae non-O1/O139 pathogenic strains also contain VPI-2, which in addition to sialic acid catabolism genes also encodes a type 3 secretion system in these strains. VPI-2 integrates into chromosome 1 at a tRNA-serine site and encodes an integrase intV2 (VC1758) that belongs to the tyrosine recombinase family. ntV2 is required for VPI-2 excision from chromosome 1, which occurs at very low levels, and formation of a non-replicative circular intermediate.


Physical Interaction Between Vivid And White Collar Complex Regulates Photoadaptation In Neurospora, Chen-Hui H. Chen, Bradley S. Demay, Amy S. Gladfelter, Jay Dunlap, Jennifer J. Loros Sep 2010

Physical Interaction Between Vivid And White Collar Complex Regulates Photoadaptation In Neurospora, Chen-Hui H. Chen, Bradley S. Demay, Amy S. Gladfelter, Jay Dunlap, Jennifer J. Loros

Dartmouth Scholarship

Photoadaptation, the ability to attenuate a light response on prolonged light exposure while remaining sensitive to escalating changes in light intensity, is essential for organisms to decipher time information appropriately, yet the underlying molecular mechanisms are poorly understood. In Neurospora crassa, VIVID (VVD), a small LOV domain containing blue-light photoreceptor protein, affects photoadaptation for most if not all light-responsive genes. We report that there is a physical interaction between VVD and the white collar complex (WCC), the primary blue-light photoreceptor and the transcription factor complex that initiates light-regulated transcriptional responses in Neurospora. Using two previously characterized VVD mutants, we show …


Ceramide Kinase Regulates Phospholipase C And Phosphatidylinositol 4, 5, Bisphosphate In Phototransduction, Ujjaini Dasgupta, Takeshi Bamba, Salvatore Chiantia, Pusha Karim, Ahmad N. Abou Tayoun Nov 2009

Ceramide Kinase Regulates Phospholipase C And Phosphatidylinositol 4, 5, Bisphosphate In Phototransduction, Ujjaini Dasgupta, Takeshi Bamba, Salvatore Chiantia, Pusha Karim, Ahmad N. Abou Tayoun

Dartmouth Scholarship

Phosphoinositide-specific phospholipase C (PLC) is a central effector for many biological responses regulated by G-protein-coupled receptors including Drosophila phototransduction where light sensitive channels are activated downstream of NORPA, a PLCbeta homolog. Here we show that the sphingolipid biosynthetic enzyme, ceramide kinase, is a novel regulator of PLC signaling and photoreceptor homeostasis. A mutation in ceramide kinase specifically leads to proteolysis of NORPA, consequent loss of PLC activity, and failure in light signal transduction. The mutant photoreceptors also undergo activity-dependent degeneration. Furthermore, we show that a significant increase in ceramide, resulting from lack of ceramide kinase, perturbs the membrane microenvironment of …


Stoichiometric Controls Of Mercury Dilution By Growth, Roxanne Karimi, Celia Y. Chen, Paul C. Pickhardt, Nicholas S. Fisher, Carol L. Folt May 2007

Stoichiometric Controls Of Mercury Dilution By Growth, Roxanne Karimi, Celia Y. Chen, Paul C. Pickhardt, Nicholas S. Fisher, Carol L. Folt

Dartmouth Scholarship

Rapid growth could significantly reduce methylmercury (MeHg) concentrations in aquatic organisms by causing a greater than proportional gain in biomass relative to MeHg (somatic growth dilution). We hypothesized that rapid growth from the consumption of high-quality algae, defined by algal nutrient stoichiometry, reduces MeHg concentrations in zooplankton, a major source of MeHg for lake fish. Using a MeHg radiotracer, we measured changes in MeHg concentrations, growth and ingestion rates in juvenile Daphnia pulex fed either high (C:P = 139) or low-quality (C:P = 1317) algae (Ankistrodesmus falcatus) for 5 d. We estimated Daphnia steady-state MeHg concentrations, using a …