Open Access. Powered by Scholars. Published by Universities.®

Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Climate change

University of South Carolina

Oceanography and Atmospheric Sciences and Meteorology

Publication Year

Articles 1 - 3 of 3

Full-Text Articles in Biology

What Is Refractory Organic Matter In The Ocean?, Federico Baltar, Xosé A. Alvarez-Salgado, Javier Arístegui, Ronald Benner, Dennis A. Hansell, Gerhard J. Herndl, Christian Lønborg Apr 2021

What Is Refractory Organic Matter In The Ocean?, Federico Baltar, Xosé A. Alvarez-Salgado, Javier Arístegui, Ronald Benner, Dennis A. Hansell, Gerhard J. Herndl, Christian Lønborg

Faculty Publications

About 20% of the organic carbon produced in the sunlit surface ocean is transported into the ocean’s interior as dissolved, suspended and sinking particles to be mineralized and sequestered as dissolved inorganic carbon (DIC), sedimentary particulate organic carbon (POC) or “refractory” dissolved organic carbon (rDOC). Recently, the physical and biological mechanisms associated with the particle pumps have been revisited, suggesting that accepted fluxes might be severely underestimated (Boyd et al., 2019; Buesseler et al., 2020). Perhaps even more poorly understood are the mechanisms driving rDOC production and its potential accumulation in the ocean. On the basis of …


What Is Refractory Organic Matter In The Ocean?, Federico Baltar, Xosé A. Alvarez-Salgado, Javier Arístegui, Ronald Benner, Dennis A. Hansell, Gerhard J. Herndl, Christian Lønborg Apr 2021

What Is Refractory Organic Matter In The Ocean?, Federico Baltar, Xosé A. Alvarez-Salgado, Javier Arístegui, Ronald Benner, Dennis A. Hansell, Gerhard J. Herndl, Christian Lønborg

Faculty Publications

About 20% of the organic carbon produced in the sunlit surface ocean is transported into the ocean’s interior as dissolved, suspended and sinking particles to be mineralized and sequestered as dissolved inorganic carbon (DIC), sedimentary particulate organic carbon (POC) or “refractory” dissolved organic carbon (rDOC). Recently, the physical and biological mechanisms associated with the particle pumps have been revisited, suggesting that accepted fluxes might be severely underestimated (Boyd et al., 2019; Buesseler et al., 2020). Perhaps even more poorly understood are the mechanisms driving rDOC production and its potential accumulation in the ocean. On the basis of …


Climate Warming Can Accelerate Carbon Fluxes Without Changing Soil Carbon Stocks, Susan E. Ziegler, Ronald Benner, Sharon A. Billings, Kate A. Edwards, Michael Philben, Xinbiao Zhu, Jerome Laganière Feb 2017

Climate Warming Can Accelerate Carbon Fluxes Without Changing Soil Carbon Stocks, Susan E. Ziegler, Ronald Benner, Sharon A. Billings, Kate A. Edwards, Michael Philben, Xinbiao Zhu, Jerome Laganière

Faculty Publications

Climate warming enhances multiple ecosystem C fluxes, but the net impact of changing C fluxes on soil organic carbon (SOC) stocks over decadal to centennial time scales remains unclear. We investigated the effects of climate on C fluxes and soil C stocks using space-for-time substitution along a boreal forest climate gradient encompassing spatially replicated sites at each of three latitudes. All regions had similar SOC concentrations and stocks (5.6 to 6.7 kg C m−2). The three lowest latitude forests exhibited the highest productivity across the transect, with tree biomass:age ratios and litterfall rates 300 and 125% higher than those in …