Open Access. Powered by Scholars. Published by Universities.®

Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 39

Full-Text Articles in Biology

Possible Synergistic Effects Of Thymol And Nicotine Against Crithidia Bombi Parasitism In Bumble Bees, Olivia Masi Biller, Lynn S. Adler, Rebecca E. Irwin, Caitlin Mcallister, Evan C. Palmer-Young Dec 2015

Possible Synergistic Effects Of Thymol And Nicotine Against Crithidia Bombi Parasitism In Bumble Bees, Olivia Masi Biller, Lynn S. Adler, Rebecca E. Irwin, Caitlin Mcallister, Evan C. Palmer-Young

Dartmouth Scholarship

Floral nectar contains secondary compounds with antimicrobial properties that can affect not only plant-pollinator interactions, but also interactions between pollinators and their parasites. Although recent work has shown that consumption of plant secondary compounds can reduce pollinator parasite loads, little is known about the effects of dosage or compound combinations. We used the generalist pollinator Bombus impatiens and its obligate gut parasite Crithidia bombi to study the effects of nectar chemistry on host-parasite interactions. In two experiments we tested (1) whether the secondary compounds thymol and nicotine act synergistically to reduce parasitism, and (2) whether dietary thymol concentration affects parasite …


Testing Dose-Dependent Effects Of The Nectar Alkaloid Anabasine On Trypanosome Parasite Loads In Adult Bumble Bees, Winston E. Anthony, Evan C. Palmer-Young, Anne S. Leonard, Rebecca E. Irwin, Lynn S. Adler Nov 2015

Testing Dose-Dependent Effects Of The Nectar Alkaloid Anabasine On Trypanosome Parasite Loads In Adult Bumble Bees, Winston E. Anthony, Evan C. Palmer-Young, Anne S. Leonard, Rebecca E. Irwin, Lynn S. Adler

Dartmouth Scholarship

The impact of consuming biologically active compounds is often dose-dependent, where small quantities can be medicinal while larger doses are toxic. The consumption of plant secondary compounds can be toxic to herbivores in large doses, but can also improve survival in parasitized herbivores. In addition, recent studies have found that consuming nectar secondary compounds may decrease parasite loads in pollinators. However, the effect of compound dose on bee survival and parasite loads has not been assessed. To determine how secondary compound consumption affects survival and pathogen load in Bombus impatiens, we manipulated the presence of a common gut parasite, …


A Mitochondria-Anchored Isoform Of The Actin-Nucleating Spire Protein Regulates Mitochondrial Division, Uri Manor, Sadie Bartholomew, Gonen Golani, Eric Christenson, Michael Kozlov, Henry Higgs, James Spudich, Jennifer Lippincott-Schwartz Aug 2015

A Mitochondria-Anchored Isoform Of The Actin-Nucleating Spire Protein Regulates Mitochondrial Division, Uri Manor, Sadie Bartholomew, Gonen Golani, Eric Christenson, Michael Kozlov, Henry Higgs, James Spudich, Jennifer Lippincott-Schwartz

Dartmouth Scholarship

Mitochondrial division, essential for survival in mammals, is enhanced by an inter-organellar process involving ER tubules encircling and constricting mitochondria. The force for constriction is thought to involve actin polymerization by the ER-anchored isoform of the formin protein inverted formin 2 (INF2). Unknown is the mechanism triggering INF2-mediated actin polymerization at ER-mitochondria intersections. We show that a novel isoform of the formin-binding, actin-nucleating protein Spire, Spire1C, localizes to mitochondria and directly links mitochondria to the actin cytoskeleton and the ER. Spire1C binds INF2 and promotes actin assembly on mitochondrial surfaces. Disrupting either Spire1C actin- or formin-binding activities reduces mitochondrial constriction …


Spatial Heterogeneity, Host Movement And Mosquito-Borne Disease Transmission, Miguel A. Acevedo, Olivia Prosper, Kenneth Lopiano, Nick Ruktanonchai, T. Trevor Caughlin, Maia Martcheva, Craig W. Osenberg, David L. Smith Jun 2015

Spatial Heterogeneity, Host Movement And Mosquito-Borne Disease Transmission, Miguel A. Acevedo, Olivia Prosper, Kenneth Lopiano, Nick Ruktanonchai, T. Trevor Caughlin, Maia Martcheva, Craig W. Osenberg, David L. Smith

Dartmouth Scholarship

Mosquito-borne diseases are a global health priority disproportionately affecting low-income populations in tropical and sub-tropical countries. These pathogens live in mosquitoes and hosts that interact in spatially heterogeneous environments where hosts move between regions of varying transmission intensity. Although there is increasing interest in the implications of spatial processes for mosquito-borne disease dynamics, most of our understanding derives from models that assume spatially homogeneous transmission. Spatial variation in contact rates can influence transmission and the risk of epidemics, yet the interaction between spatial heterogeneity and movement of hosts remains relatively unexplored. Here we explore, analytically and through numerical simulations, how …


Cytoskeletal Dynamics: A View From The Membrane, Magdalena Bezanilla, Amy S. Gladfelter, David R. Kovar, Wei-Lih Lee May 2015

Cytoskeletal Dynamics: A View From The Membrane, Magdalena Bezanilla, Amy S. Gladfelter, David R. Kovar, Wei-Lih Lee

Dartmouth Scholarship

Many aspects of cytoskeletal assembly and dynamics can be recapitulated in vitro; yet, how the cytoskeleton integrates signals in vivo across cellular membranes is far less understood. Recent work has demonstrated that the membrane alone, or through membrane-associated proteins, can effect dynamic changes to the cytoskeleton, thereby impacting cell physiology. Having identified mechanistic links between membranes and the actin, microtubule, and septin cytoskeletons, these studies highlight the membrane’s central role in coordinating these cytoskeletal systems to carry out essential processes, such as endocytosis, spindle positioning, and cellular compartmentalization.


Collapse Of An Ecological Network In Ancient Egypt, Justin Yeakel, Mathias Pires, Lars Rudolf, Nathaniel Dominy Oct 2014

Collapse Of An Ecological Network In Ancient Egypt, Justin Yeakel, Mathias Pires, Lars Rudolf, Nathaniel Dominy

Dartmouth Scholarship

The dynamics of ecosystem collapse are fundamental to determining how and why biological communities change through time, as well as the potential effects of extinctions on ecosystems. Here, we integrate depictions of mammals from Egyptian antiquity with direct lines of paleontological and archeological evidence to infer local extinctions and community dynamics over a 6,000-y span. The unprecedented temporal resolution of this dataset enables examination of how the tandem effects of human population growth and climate change can disrupt mammalian communities. We show that the extinctions of mammals in Egypt were nonrandom and that destabilizing changes in community composition coincided with …


Natural Selection On Thermal Performance In A Novel Thermal Environment, Michael L. Logan, Robert M. Cox, Ryan Calsbeek Sep 2014

Natural Selection On Thermal Performance In A Novel Thermal Environment, Michael L. Logan, Robert M. Cox, Ryan Calsbeek

Dartmouth Scholarship

Tropical ectotherms are thought to be especially vulnerable to climate change because they are adapted to relatively stable temperature regimes, such that even small increases in environmental temperature may lead to large decreases in physiological performance. One way in which tropical organisms may mitigate the detrimental effects of warming is through evolutionary change in thermal physiology. The speed and magnitude of this response depend, in part, on the strength of climate-driven selection. However, many ectotherms use behavioral adjustments to maintain preferred body temperatures in the face of environmental variation. These behaviors may shelter individuals from natural selection, preventing evolutionary adaptation …


Recent Shifts In The Occurrence, Cause, And Magnitude Of Animal Mass Mortality Events, Samuel B. Fey, Adam M. Siepielski, Sébastien Nusslé, Kristina Cervantes-Yoshida, Jason L. Hwan, Eric R. Huber, Maxfield J. Fey, Alessandro Catenazzi, Stephanie M. Carlson Aug 2014

Recent Shifts In The Occurrence, Cause, And Magnitude Of Animal Mass Mortality Events, Samuel B. Fey, Adam M. Siepielski, Sébastien Nusslé, Kristina Cervantes-Yoshida, Jason L. Hwan, Eric R. Huber, Maxfield J. Fey, Alessandro Catenazzi, Stephanie M. Carlson

Dartmouth Scholarship

Mass mortality events (MMEs) are rapidly occurring catastrophic demographic events that punctuate background mortality levels. Individual MMEs are staggering in their observed magnitude: re- moving more than 90% of a population, resulting in the death of more than a billion individuals, or producing 700 million tons of dead biomass in a single event. Despite extensive documentation of individual MMEs, we have no understanding of the major features characterizing the occurrence and magnitude of MMEs, their causes, or trends through time. Thus, no framework exists for contextualizing MMEs in the wake of ongoing global and regional perturbations to natural systems. Here …


Four Decades Of Andean Timberline Migration And Implications For Biodiversity Loss With Climate Change, David A. Lutz, Rebecca L. Powell, Miles R. Silman Sep 2013

Four Decades Of Andean Timberline Migration And Implications For Biodiversity Loss With Climate Change, David A. Lutz, Rebecca L. Powell, Miles R. Silman

Dartmouth Scholarship

Rapid 21st-century climate change may lead to large population decreases and extinction in tropical montane cloud forest species in the Andes. While prior research has focused on species migrations per se, ecotones may respond to different environmental factors than species. Even if species can migrate in response to climate change, if ecotones do not they can function as hard barriers to species migrations, making ecotone migrations central to understanding species persistence under scenarios of climate change. We examined a 42-year span of aerial photographs and high resolution satellite imagery to calculate migration rates of timberline–the grassland-forest ecotone–inside and outside of …


Reconstruction Of Family-Level Phylogenetic Relationships Within Demospongiae (Porifera) Using Nuclear Encoded Housekeeping Genes, Malcolm S. Hill, April Hill, Jose Lopez, Kevin J. Peterson Jan 2013

Reconstruction Of Family-Level Phylogenetic Relationships Within Demospongiae (Porifera) Using Nuclear Encoded Housekeeping Genes, Malcolm S. Hill, April Hill, Jose Lopez, Kevin J. Peterson

Dartmouth Scholarship

Background: Demosponges are challenging for phylogenetic systematics because of their plastic and relatively simple morphologies and many deep divergences between major clades. To improve understanding of the phylogenetic relationships within Demospongiae, we sequenced and analyzed seven nuclear housekeeping genes involved in a variety of cellular functions from a diverse group of sponges.

Methodology/Principal Findings: We generated data from each of the four sponge classes (i.e., Calcarea, Demospongiae, Hexactinellida, and Homoscleromorpha), but focused on family-level relationships within demosponges. With data for 21 newly sampled families, our Maximum Likelihood and Bayesian-based approaches recovered previously phylogenetically defined taxa: Keratosap, Myxospongiaep, Spongillidap, Haploscleromorphap (the …


Vegf And Angiopoietin-1 Exert Opposing Effects On Cell Junctions By Regulating The Rho Gef Syx, Siu P. Ngok, Rory Geyer, Miaoliang Liu, Antonis Kourtidis, Sudesh Agrawal, Chuanshen Wu, Himabindu Reddy Seerapu, Laura J. Lewis-Tuffin, Karen L. Moodie, Deborah Huveldt, Ruth Marx, Jay M. Baraban, Peter Storz, Arie Horowitz, Panos Z. Anastasiadis Dec 2012

Vegf And Angiopoietin-1 Exert Opposing Effects On Cell Junctions By Regulating The Rho Gef Syx, Siu P. Ngok, Rory Geyer, Miaoliang Liu, Antonis Kourtidis, Sudesh Agrawal, Chuanshen Wu, Himabindu Reddy Seerapu, Laura J. Lewis-Tuffin, Karen L. Moodie, Deborah Huveldt, Ruth Marx, Jay M. Baraban, Peter Storz, Arie Horowitz, Panos Z. Anastasiadis

Dartmouth Scholarship

Vascular endothelial growth factor (VEGF) and Ang1 (Angiopoietin-1) have opposing effects on vascular permeability, but the molecular basis of these effects is not fully known. We report in this paper that VEGF and Ang1 regulate endothelial cell (EC) junctions by determining the localization of the RhoA-specific guanine nucleotide exchange factor Syx. Syx was recruited to junctions by members of the Crumbs polarity complex and promoted junction integrity by activating Diaphanous. VEGF caused translocation of Syx from cell junctions, promoting junction disassembly, whereas Ang1 maintained Syx at the junctions, inducing junction stabilization. The VEGF-induced translocation of Syx from EC junctions was …


Roles Of The Drosophila Sk Channel (Dsk) In Courtship Memory, Ahmad N. Abou Tayoun, Claudio Pikielny, Patrick J. Dolph Apr 2012

Roles Of The Drosophila Sk Channel (Dsk) In Courtship Memory, Ahmad N. Abou Tayoun, Claudio Pikielny, Patrick J. Dolph

Dartmouth Scholarship

A role for SK channels in synaptic plasticity has been very well-characterized. However, in the absence of simple genetic animal models, their role in behavioral memory remains elusive. Here, we take advantage of Drosophila melanogaster with its single SK gene (dSK) and well-established courtship memory assay to investigate the contribution of this channel to memory. Using two independent dSK alleles, a null mutation and a dominant negative subunit, we show that while dSK negatively regulates the acquisition of short-term memory 30 min after a short training session, it is required for normal long-term memory 24 h after extended …


Minimum Cost Of Transport In Asian Elephants: Do We Really Need A Bigger Elephant?, V. A. Langman, M. F. Rowe, T. J. Roberts, N. V. Langman, C. R. Taylor Jan 2012

Minimum Cost Of Transport In Asian Elephants: Do We Really Need A Bigger Elephant?, V. A. Langman, M. F. Rowe, T. J. Roberts, N. V. Langman, C. R. Taylor

Dartmouth Scholarship

Body mass is the primary determinant of an animal’s energy requirements. At their optimum walking speed, large animals have lower mass-specific energy requirements for locomotion than small ones. In animals ranging in size from 0.8 g (roach) to 260 kg (zebu steer), the minimum cost of transport (COTmin) decreases with increasing body size roughly as COTmin∝body mass (Mb)–0.316±0.023 (95% CI). Typically, the variation of COTmin with body mass is weaker at the intraspecific level as a result of physiological and geometric similarity within closely related species. The interspecific relationship estimates that …


Septin Filaments Exhibit A Dynamic, Paired Organization That Is Conserved From Yeast To Mammals, Bradley S. Demay, Xiaobo Bai, Louisa Howard, Patricia Occhipinti, Rebecca A. Meseroll, Elias T. Spiliotis, Rudolf Oldenbourg, Amy S. Gladfelter May 2011

Septin Filaments Exhibit A Dynamic, Paired Organization That Is Conserved From Yeast To Mammals, Bradley S. Demay, Xiaobo Bai, Louisa Howard, Patricia Occhipinti, Rebecca A. Meseroll, Elias T. Spiliotis, Rudolf Oldenbourg, Amy S. Gladfelter

Dartmouth Scholarship

The septins are conserved, GTP-binding proteins important for cytokinesis, membrane compartmentalization, and exocytosis. However, it is unknown how septins are arranged within higher-order structures in cells. To determine the organization of septins in live cells, we developed a polarized fluorescence microscopy system to monitor the orientation of GFP dipole moments with high spatial and temporal resolution. When GFP was fused to septins, the arrangement of GFP dipoles reflected the underlying septin organization. We demonstrated in a filamentous fungus, a budding yeast, and a mammalian epithelial cell line that septin proteins were organized in an identical highly ordered fashion. Fluorescence anisotropy …


Episodic Radiations In The Fly Tree Of Life, Brian M. Wiegmann, Michelle D. Trautwein, Isaac S. Winkler, Norman B. Barr, Jung-Wook Kim, Christine Lambkin, Matthew Bertone, Brian Cassel, Keith Bayless, Alysha Heimberg Apr 2011

Episodic Radiations In The Fly Tree Of Life, Brian M. Wiegmann, Michelle D. Trautwein, Isaac S. Winkler, Norman B. Barr, Jung-Wook Kim, Christine Lambkin, Matthew Bertone, Brian Cassel, Keith Bayless, Alysha Heimberg

Dartmouth Scholarship

Flies are one of four superradiations of insects (along with beetles, wasps, and moths) that account for the majority of animal life on Earth. Diptera includes species known for their ubiquity (Musca domestica house fly), their role as pests (Anopheles gambiae malaria mosquito), and their value as model organisms across the biological sciences (Drosophila melanogaster). A resolved phylogeny for flies provides a framework for genomic, developmental, and evolutionary studies by facilitating comparisons across model organisms, yet recent research has suggested that fly relationships have been obscured by multiple episodes of rapid diversification. We provide a phylogenomic …


Micrornas Reveal The Interrelationships Of Hagfish, Lampreys, And Gnathostomes And The Nature Of The Ancestral Vertebrate, Alysha M. Heimberg, Richard Cowper-Sal{Middle Dot}Lari, Marie Semon, Philip C. J. Donoghue, Kevin J. Peterson Nov 2010

Micrornas Reveal The Interrelationships Of Hagfish, Lampreys, And Gnathostomes And The Nature Of The Ancestral Vertebrate, Alysha M. Heimberg, Richard Cowper-Sal{Middle Dot}Lari, Marie Semon, Philip C. J. Donoghue, Kevin J. Peterson

Dartmouth Scholarship

Hagfish and lampreys are the only living representatives of the jawless vertebrates (agnathans), and compared with jawed vertebrates (gnathostomes), they provide insight into the embryology, genomics, and body plan of the ancestral vertebrate. However, this insight has been obscured by controversy over their interrelationships. Morphological cladistic analyses have identified lampreys and gnathostomes as closest relatives, whereas molecular phylogenetic studies recover a monophyletic Cyclostomata (hagfish and lampreys as closest relatives). Here, we show through deep sequencing of small RNA libraries, coupled with genomic surveys, that Cyclostomata is monophyletic: hagfish and lampreys share 4 unique microRNA families, 15 unique paralogues of more …


Invasive Predators Deplete Genetic Diversity Of Island Lizards, Amandine Gasc, M. C. Duryea, Robert M. Cox, Andrew Kern, Ryan Calsbeek Aug 2010

Invasive Predators Deplete Genetic Diversity Of Island Lizards, Amandine Gasc, M. C. Duryea, Robert M. Cox, Andrew Kern, Ryan Calsbeek

Dartmouth Scholarship

Invasive species can dramatically impact natural populations, especially those living on islands. Though numerous examples illustrate the ecological impact of invasive predators, no study has examined the genetic consequences for native populations subject to invasion. Here we capitalize on a natural experiment in which a long-term study of the brown anole lizard (Anolis sagrei) was interrupted by rat invasion. An island population that was devastated by rats recovered numerically following rat extermination. However, population genetic analyses at six microsatellite loci suggested a possible loss of genetic diversity due to invasion when compared to an uninvaded island studied over …


Temporal Regulation Of The Muscle Gene Cascade By Macho1 And Tbx6 Transcription Factors In Ciona Intestinalis, Jamie E. Kugler, Stefan Gazdoiu, Izumi Oda-Ishii, Yale J. Passamaneck, Albert J. Erives, Anna Di Gregorio Apr 2010

Temporal Regulation Of The Muscle Gene Cascade By Macho1 And Tbx6 Transcription Factors In Ciona Intestinalis, Jamie E. Kugler, Stefan Gazdoiu, Izumi Oda-Ishii, Yale J. Passamaneck, Albert J. Erives, Anna Di Gregorio

Dartmouth Scholarship

For over a century, muscle formation in the ascidian embryo has been representative of 'mosaic' development. The molecular basis of muscle-fate predetermination has been partly elucidated with the discovery of Macho1, a maternal zinc-finger transcription factor necessary and sufficient for primary muscle development, and of its transcriptional intermediaries Tbx6b and Tbx6c. However, the molecular mechanisms by which the maternal information is decoded by cis-regulatory modules (CRMs) associated with muscle transcription factor and structural genes, and the ways by which a seamless transition from maternal to zygotic transcription is ensured, are still mostly unclear. By combining misexpression assays with CRM analyses, …


Ceramide Kinase Regulates Phospholipase C And Phosphatidylinositol 4, 5, Bisphosphate In Phototransduction, Ujjaini Dasgupta, Takeshi Bamba, Salvatore Chiantia, Pusha Karim, Ahmad N. Abou Tayoun Nov 2009

Ceramide Kinase Regulates Phospholipase C And Phosphatidylinositol 4, 5, Bisphosphate In Phototransduction, Ujjaini Dasgupta, Takeshi Bamba, Salvatore Chiantia, Pusha Karim, Ahmad N. Abou Tayoun

Dartmouth Scholarship

Phosphoinositide-specific phospholipase C (PLC) is a central effector for many biological responses regulated by G-protein-coupled receptors including Drosophila phototransduction where light sensitive channels are activated downstream of NORPA, a PLCbeta homolog. Here we show that the sphingolipid biosynthetic enzyme, ceramide kinase, is a novel regulator of PLC signaling and photoreceptor homeostasis. A mutation in ceramide kinase specifically leads to proteolysis of NORPA, consequent loss of PLC activity, and failure in light signal transduction. The mutant photoreceptors also undergo activity-dependent degeneration. Furthermore, we show that a significant increase in ceramide, resulting from lack of ceramide kinase, perturbs the membrane microenvironment of …


Manipulating Testosterone To Assess Links Between Behavior, Morphology, And Performance In The Brown Anole Anolis Sagrei, Robert M. Cox, Derek S. Stenquist, Justin P. Henningsen, Ryan Calsbeek Aug 2009

Manipulating Testosterone To Assess Links Between Behavior, Morphology, And Performance In The Brown Anole Anolis Sagrei, Robert M. Cox, Derek S. Stenquist, Justin P. Henningsen, Ryan Calsbeek

Dartmouth Scholarship

Survival and reproductive success are determined by the complex interplay between behavior, physiology, morphology, and performance. When optimal trait combinations along these various phenotypic axes differ between sexes or across seasons, regulatory mechanisms such as sex steroids can often facilitate sex‐specific and/or seasonal trait expression. In this study, we used surgical castration and replacement of exogenous testosterone in adult male brown anoles (Anolis sagrei) to simultaneously examine the effects of testosterone on a suite of morphological (dewlap area, body size), physiological (immune function), behavioral (dewlap, head bob, and push‐up displays), and performance (stamina, sprint speed, bite force) traits. …


Accumulation Of Rhodopsin In Late Endosomes Triggers Photoreceptor Cell Degeneration, Yashodhan Chinchore, Amitavo Mitra, Patrick J. Dolph, Norbert Perrimon Feb 2009

Accumulation Of Rhodopsin In Late Endosomes Triggers Photoreceptor Cell Degeneration, Yashodhan Chinchore, Amitavo Mitra, Patrick J. Dolph, Norbert Perrimon

Dartmouth Scholarship

Progressive retinal degeneration is the underlying feature of many human retinal dystrophies. Previous work using Drosophila as a model system and analysis of specific mutations in human rhodopsin have uncovered a connection between rhodopsin endocytosis and retinal degeneration. In these mutants, rhodopsin and its regulatory protein arrestin form stable complexes, and endocytosis of these complexes causes photoreceptor cell death. In this study we show that the internalized rhodopsin is not degraded in the lysosome but instead accumulates in the late endosomes. Using mutants that are defective in late endosome to lysosome trafficking, we were able to show that rhodopsin accumulates …


Evolution Acts On Enhancer Organization To Fine-Tune Gradient Threshold Readouts, Justin Crocker, Yoichiro Tamori, Albert Erives Nov 2008

Evolution Acts On Enhancer Organization To Fine-Tune Gradient Threshold Readouts, Justin Crocker, Yoichiro Tamori, Albert Erives

Dartmouth Scholarship

The elucidation of principles governing evolution of gene regulatory sequence is critical to the study of metazoan diversification. We are therefore exploring the structure and organizational constraints of regulatory sequences by studying functionally equivalent cis-regulatory modules (CRMs) that have been evolving in parallel across several loci. Such an independent dataset allows a multi-locus study that is not hampered by nonfunctional or constrained homology. The neurogenic ectoderm enhancers (NEEs) of Drosophila melanogaster are one such class of coordinately regulated CRMs. The NEEs share a common organization of binding sites and as a set would be useful to study the relationship …


Nectar Secondary Compounds Affect Self-Pollen Transfer: Implications For Female And Male Reproduction, Rebecca E. Irwin, Lynn S. Adler Aug 2008

Nectar Secondary Compounds Affect Self-Pollen Transfer: Implications For Female And Male Reproduction, Rebecca E. Irwin, Lynn S. Adler

Dartmouth Scholarship

Pollen movement within and among plants affects inbreeding, plant fitness, and the spatial scale of genetic differentiation. Although a number of studies have assessed how plant and floral traits influence pollen movement via changes in pollinator behavior, few have explored how nectar chemical composition affects pollen transfer. As many as 55% of plants produce secondary compounds in their nectar, which is surprising given that nectar is typically thought to attract pollinators. We tested the hypothesis that nectar with secondary compounds may benefit plants by encouraging pollinators to leave plants after visiting only a few flowers, thus reducing self-pollen transfer. We …


The Role Of Carcinine In Signaling At The Drosophila Photoreceptor Synapse, Brendan A. Gavin, Susan E. Arruda, Patrick J. Dolph Dec 2007

The Role Of Carcinine In Signaling At The Drosophila Photoreceptor Synapse, Brendan A. Gavin, Susan E. Arruda, Patrick J. Dolph

Dartmouth Scholarship

The Drosophila melanogaster photoreceptor cell has long served as a model system for researchers focusing on how animal sensory neurons receive information from their surroundings and translate this information into chemical and electrical messages. Electroretinograph (ERG) analysis of Drosophila mutants has helped to elucidate some of the genes involved in the visual transduction pathway downstream of the photoreceptor cell, and it is now clear that photoreceptor cell signaling is dependent upon the proper release and recycling of the neurotransmitter histamine. While the neurotransmitter transporters responsible for clearing histamine, and its metabolite carcinine, from the synaptic cleft have remained unknown, a …


Regulation Of Meiotic Cohesion And Chromosome Core Morphogenesis During Pachytene In Drosophila Oocytes, Radhika S. Khetani, Sharon E. Bickel Jul 2007

Regulation Of Meiotic Cohesion And Chromosome Core Morphogenesis During Pachytene In Drosophila Oocytes, Radhika S. Khetani, Sharon E. Bickel

Dartmouth Scholarship

During meiosis, cohesion between sister chromatids is required for normal levels of homologous recombination, maintenance of chiasmata and accurate chromosome segregation during both divisions. In Drosophila, null mutations in the ord gene abolish meiotic cohesion, although how ORD protein promotes cohesion has remained elusive. We show that SMC subunits of the cohesin complex colocalize with ORD at centromeres of ovarian germ-line cells. In addition, cohesin SMCs and ORD are visible along the length of meiotic chromosomes during pachytene and remain associated with chromosome cores following DNase I digestion. In flies lacking ORD activity, cohesin SMCs fail to accumulate at oocyte …


Coordinated Regulation Of Myc Trans-Activation Targets By Polycomb And The Trithorax Group Protein Ash1, Julie M. Goodliffe, Michael D. Cole, Eric Wieschaus May 2007

Coordinated Regulation Of Myc Trans-Activation Targets By Polycomb And The Trithorax Group Protein Ash1, Julie M. Goodliffe, Michael D. Cole, Eric Wieschaus

Dartmouth Scholarship

The Myc oncoprotein is a transcriptional regulator whose function is essential for normal development. Myc is capable of binding to 10% of the mammalian genome, and it is unclear how a developing embryo controls the DNA binding of its abundant Myc proteins in order to avoid Myc's potential for inducing tumorigenesis.To identify chromatin binding proteins with a potential role in controlling Myc activity, we established a genetic assay for dMyc activity in Drosophila. We conducted a genome-wide screen using this assay, and identified the Trithorax Group protein Ash1 as a modifier of dMyc activity. Ash1 is a histone methyltransferase known …


Stoichiometric Controls Of Mercury Dilution By Growth, Roxanne Karimi, Celia Y. Chen, Paul C. Pickhardt, Nicholas S. Fisher, Carol L. Folt May 2007

Stoichiometric Controls Of Mercury Dilution By Growth, Roxanne Karimi, Celia Y. Chen, Paul C. Pickhardt, Nicholas S. Fisher, Carol L. Folt

Dartmouth Scholarship

Rapid growth could significantly reduce methylmercury (MeHg) concentrations in aquatic organisms by causing a greater than proportional gain in biomass relative to MeHg (somatic growth dilution). We hypothesized that rapid growth from the consumption of high-quality algae, defined by algal nutrient stoichiometry, reduces MeHg concentrations in zooplankton, a major source of MeHg for lake fish. Using a MeHg radiotracer, we measured changes in MeHg concentrations, growth and ingestion rates in juvenile Daphnia pulex fed either high (C:P = 139) or low-quality (C:P = 1317) algae (Ankistrodesmus falcatus) for 5 d. We estimated Daphnia steady-state MeHg concentrations, using a …


An Essential Role For Endocytosis Of Rhodopsin Through Interaction Of Visual Arrestin With The Ap-2 Adaptor, Nicholas R. Orem, Luxi Xia, Patrick J. Dolph May 2006

An Essential Role For Endocytosis Of Rhodopsin Through Interaction Of Visual Arrestin With The Ap-2 Adaptor, Nicholas R. Orem, Luxi Xia, Patrick J. Dolph

Dartmouth Scholarship

Previously, we have identified a class of retinal degeneration mutants in Drosophila in which the normally transient interaction between arrestin2 (Arr2) and rhodopsin is stabilized and the complexes are rapidly internalized into the cell body by receptor-mediated endocytosis. The accumulation of protein complexes in the cytoplasm eventually results in photoreceptor cell death. We now show that the endocytic adapter protein AP-2 is essential for rhodopsin endocytosis through an Arr2-AP-2beta interaction, and mutations in Arr2 that disrupt its interaction with the beta subunit of AP-2 prevent endocytosis-induced retinal degeneration. We further demonstrate that if the interaction between Arr2 and AP-2 is …


Calmodulin And Pf6 Are Components Of A Complex That Localizes To The C1 Microtubule Of The Flagellar Central Apparatus, Matthew J. Wargo, Erin E. Dymek, Elizabeth F. Smith Jul 2005

Calmodulin And Pf6 Are Components Of A Complex That Localizes To The C1 Microtubule Of The Flagellar Central Apparatus, Matthew J. Wargo, Erin E. Dymek, Elizabeth F. Smith

Dartmouth Scholarship

Studies of flagellar motility in Chlamydomonas mutants lacking specific central apparatus components have supported the hypothesis that the inherent asymmetry of this structure provides important spatial cues for asymmetric regulation of dynein activity. These studies have also suggested that specific projections associated with the C1 and C2 central tubules make unique contributions to modulating motility; yet, we still do not know the identities of most polypeptides associated with the central tubules. To identify components of the C1a projection, we took an immunoprecipitation approach using antibodies generated against PF6. The pf6 mutant lacks the C1a projection and possesses flagella that only …


Origin Of The Eumetazoa: Testing Ecological Predictions Of Molecular Clocks Against The Proterozoic Fossil Record, Kevin J. Peterson, Nicholas J. Butterfield Jul 2005

Origin Of The Eumetazoa: Testing Ecological Predictions Of Molecular Clocks Against The Proterozoic Fossil Record, Kevin J. Peterson, Nicholas J. Butterfield

Dartmouth Scholarship

Molecular clocks have the potential to shed light on the timing of early metazoan divergences, but differing algorithms and calibration points yield conspicuously discordant results. We argue here that competing molecular clock hypotheses should be testable in the fossil record, on the principle that fundamentally new grades of animal organization will have ecosystem-wide impacts. Using a set of seven nuclear-encoded protein sequences, we demonstrate the paraphyly of Porifera and calculate sponge/eumetazoan and cnidarian/bilaterian divergence times by using both distance [minimum evolution (ME)] and maximum likelihood (ML) molecular clocks; ME brackets the appearance of Eumetazoa between 634 and 604 Ma, whereas …