Open Access. Powered by Scholars. Published by Universities.®

Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Biology

Transgenerational Plasticity Causes Differences In Uv-Tolerance Of Intertidal And Subtidal Populations Of The Purple Sea Urchin, Strongylocentrotus Purpuratus, Yareli Alvarez, Nikki L. Adams Sep 2020

Transgenerational Plasticity Causes Differences In Uv-Tolerance Of Intertidal And Subtidal Populations Of The Purple Sea Urchin, Strongylocentrotus Purpuratus, Yareli Alvarez, Nikki L. Adams

Master's Theses

Planktonic larvae of marine organisms are increasingly being exposed and required to respond to a changing physical environment. Adult sea urchins occupy both intertidal and subtidal waters and broadcast spawn gametes into the water column to contend with variable physical conditions. To answer how populations of invertebrates residing at different depths adequately prepare their offspring to cope with different levels of ultraviolet radiation (UVR), we collected adult purple sea urchins, Strongylocentrotus purpuratus, from four sites (two intertidal and two subtidal (~15 m deep)) on the central coast of CA to compare UV tolerance in offspring. Our measurements of UVA …


Zinc Sunscreens Affect Development Of Strongylocentrotus Purpuratus Embryos, Brittany E. Cunningham, Nikki L. Adams Jun 2018

Zinc Sunscreens Affect Development Of Strongylocentrotus Purpuratus Embryos, Brittany E. Cunningham, Nikki L. Adams

Master's Theses

The growing popularity of physical sunscreens will also lead to an increased release of the ingredients from zinc oxide (ZnO) sunscreens into marine environments. Though zinc (Zn) is a necessary micronutrient in the ocean, greater than natural Zn concentrations are being released into marine environments by use of sunscreens. The extent of the consequences of the addition of Zn to the ocean are not fully understood. We investigated effects of materials released by zinc oxide (ZnO) sunscreens on the development of California purple sea urchin, Strongylocentrotus purpuratus. Embryos developed in various concentrations of Zn, the sources of which included …


Effect Of Oxygen-Limiting Tidal Conditions On Muscle Metabolism And Structure In The Giant Acorn Barnacle, Balanus Nubilus, Katie O. Grady Dec 2016

Effect Of Oxygen-Limiting Tidal Conditions On Muscle Metabolism And Structure In The Giant Acorn Barnacle, Balanus Nubilus, Katie O. Grady

Master's Theses

Crustacean muscle fibers are some of the largest cells in the animal kingdom, with fiber diameters in the giant acorn barnacle (Balanus nubilus) exceeding 3 mm. Sessile animals with extreme muscle sizes and that live in the hypoxia-inducing intertidal zone – like B. nubilus – represent ideal models for probing the effects of oxygen limitation on muscle cells. We investigated changes in metabolism and structure of B. nubilus muscle in response to: normoxic immersion, anoxic immersion, or air emersion, for acute (6h) or chronic (6h exposures twice daily for 2wks) time periods. Following exposure, we immediately measured hemolymph …


Role Of Msaa Gene In Regulation Of The Msaabcr Operon And Biofilm Development In Staphylococcus Aureus, Ahmed Alzuway Aug 2014

Role Of Msaa Gene In Regulation Of The Msaabcr Operon And Biofilm Development In Staphylococcus Aureus, Ahmed Alzuway

Master's Theses

Staphylococcus aureus is an important human pathogen that causes wide variety of diseases ranging from chronic biofilm associated infection to acute life threatening infection such as bacteremia, pneumonia, osteomyelitis, or endocarditis, despite the progress with antibiotics used in the treatment of bacterial infections. Furthermore, increased use of prosthetic and indwelling devices in modern medical practices has led to increased infections due to S. aureus. Treating S. aureus infections have become difficult owing to its ability to resist most of the antibiotics; this problem is further exacerbated by ability of MRSA strains to form biofilms. Emergence of community-acquired methicillin resistance …


Dissolved Organic Matter Influences The Timing Of Embryonic Development Of The Purple Sea Urchin, Strongylocentrotus Purpuratus., Corbin J. Hodges Dec 2009

Dissolved Organic Matter Influences The Timing Of Embryonic Development Of The Purple Sea Urchin, Strongylocentrotus Purpuratus., Corbin J. Hodges

Master's Theses

Marine dissolved organic matter (DOM) comprises one of the largest carbon reservoirs on earth and has long been considered a potential energy source for marine invertebrates. The importance of DOM transport has been adequately demonstrated for unicellular organisms, where DOM can meet 100% of an organisms energy needs, but the effects of DOM uptake for marine metazoans are less well understood. In this study, three general areas involving the influence of DOM transport to marine invertebrates were explored. First, we assessed the effects of using seawater exposed to high intensity ultraviolet radiation (UVR) on the study organism; embryos of the …


Exposure To Ultraviolet Radiation Causes Proteomic Changes In Embryos Of The Purple Sea Urchin, Strongylocentrotus Purpuratus, Joseph Paul Campanale Aug 2009

Exposure To Ultraviolet Radiation Causes Proteomic Changes In Embryos Of The Purple Sea Urchin, Strongylocentrotus Purpuratus, Joseph Paul Campanale

Master's Theses

The amount of solar ultraviolet radiation (UVR, 290-400 nm) reaching Earth’s surface is increasing due to ozone depletion and global climate change. Embryos of the purple sea urchin, Strongylocentrotus purpuratus, provide an ideal system for examining how UVR affects developing marine organisms and cells in general. To model the protein-mediated cell cycle response to UV-irradiation, six batches of S. purpuratus embryos were exposed to UVR, monitored for delays in the first mitotic division and examined for global proteomic changes. Embryos from each batch were exposed to or protected from artificial UVR for 25 or 60 min. Embryos treated with …