Open Access. Powered by Scholars. Published by Universities.®

Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 15 of 15

Full-Text Articles in Biology

An Approach For Determining And Measuring Network Hierarchy Applied To Comparing The Phosphorylome And The Regulome, Chao Cheng, Erik Andrews, Koon-Kiu Yan, Matthew Ung, Daifeng Wang, Mark Gerstein Mar 2015

An Approach For Determining And Measuring Network Hierarchy Applied To Comparing The Phosphorylome And The Regulome, Chao Cheng, Erik Andrews, Koon-Kiu Yan, Matthew Ung, Daifeng Wang, Mark Gerstein

Dartmouth Scholarship

Many biological networks naturally form a hierarchy with a preponderance of downward information flow. In this study, we define a score to quantify the degree of hierarchy in a network and develop a simulated-annealing algorithm to maximize the hierarchical score globally over a network. We apply our algorithm to determine the hierarchical structure of the phosphorylome in detail and investigate the correlation between its hierarchy and kinase properties. We also compare it to the regulatory network, finding that the phosphorylome is more hierarchical than the regulome.


Allelic Polymorphism Of Gigantea Is Responsible For Naturally Occurring Variation In Circadian Period In Brassica Rapa, Qiguang Xie, Ping Lou, Victor Hermand, Rashid Aman Mar 2015

Allelic Polymorphism Of Gigantea Is Responsible For Naturally Occurring Variation In Circadian Period In Brassica Rapa, Qiguang Xie, Ping Lou, Victor Hermand, Rashid Aman

Dartmouth Scholarship

GIGANTEA (GI) was originally identified by a late-flowering mutant in Arabidopsis, but subsequently has been shown to act in circadian period determination, light inhibition of hypocotyl elongation, and responses to multiple abiotic stresses, including tolerance to high salt and cold (freezing) temperature. Genetic mapping and analysis of families of heterogeneous inbred lines showed that natural variation in GI is responsible for a major quantitative trait locus in circadian period in Brassica rapa. We confirmed this conclusion by transgenic rescue of an Arabidopsis gi-201 loss of function mutant. The two B. rapa GI alleles each fully rescued the …


Natural Selection On Thermal Performance In A Novel Thermal Environment, Michael L. Logan, Robert M. Cox, Ryan Calsbeek Sep 2014

Natural Selection On Thermal Performance In A Novel Thermal Environment, Michael L. Logan, Robert M. Cox, Ryan Calsbeek

Dartmouth Scholarship

Tropical ectotherms are thought to be especially vulnerable to climate change because they are adapted to relatively stable temperature regimes, such that even small increases in environmental temperature may lead to large decreases in physiological performance. One way in which tropical organisms may mitigate the detrimental effects of warming is through evolutionary change in thermal physiology. The speed and magnitude of this response depend, in part, on the strength of climate-driven selection. However, many ectotherms use behavioral adjustments to maintain preferred body temperatures in the face of environmental variation. These behaviors may shelter individuals from natural selection, preventing evolutionary adaptation …


Recent Shifts In The Occurrence, Cause, And Magnitude Of Animal Mass Mortality Events, Samuel B. Fey, Adam M. Siepielski, Sébastien Nusslé, Kristina Cervantes-Yoshida, Jason L. Hwan, Eric R. Huber, Maxfield J. Fey, Alessandro Catenazzi, Stephanie M. Carlson Aug 2014

Recent Shifts In The Occurrence, Cause, And Magnitude Of Animal Mass Mortality Events, Samuel B. Fey, Adam M. Siepielski, Sébastien Nusslé, Kristina Cervantes-Yoshida, Jason L. Hwan, Eric R. Huber, Maxfield J. Fey, Alessandro Catenazzi, Stephanie M. Carlson

Dartmouth Scholarship

Mass mortality events (MMEs) are rapidly occurring catastrophic demographic events that punctuate background mortality levels. Individual MMEs are staggering in their observed magnitude: re- moving more than 90% of a population, resulting in the death of more than a billion individuals, or producing 700 million tons of dead biomass in a single event. Despite extensive documentation of individual MMEs, we have no understanding of the major features characterizing the occurrence and magnitude of MMEs, their causes, or trends through time. Thus, no framework exists for contextualizing MMEs in the wake of ongoing global and regional perturbations to natural systems. Here …


Interaction Between Allelic Variations In Vitamin D Receptor And Retinoid X Receptor Genes On Metabolic Traits, Karani S. Vimaleswaran, Alana Cavadino, Diane J. Berry, Massimo Mangino, Peter Andrews, Jason H. Moore Mar 2014

Interaction Between Allelic Variations In Vitamin D Receptor And Retinoid X Receptor Genes On Metabolic Traits, Karani S. Vimaleswaran, Alana Cavadino, Diane J. Berry, Massimo Mangino, Peter Andrews, Jason H. Moore

Dartmouth Scholarship

Low vitamin D status has been shown to be a risk factor for several metabolic traits such as obesity, diabetes and cardiovascular disease. The biological actions of 1, 25-dihydroxyvitamin D, are mediated through the vitamin D receptor (VDR), which heterodimerizes with retinoid X receptor, gamma (RXRG). Hence, we examined the potential interactions between the tagging polymorphisms in the VDR (22 tag SNPs) and RXRG (23 tag SNPs) genes on metabolic outcomes such as body mass index, waist circumference, waist-hip ratio (WHR), high- and low-density lipoprotein (LDL) cholesterols, serum triglycerides, systolic and diastolic blood pressures and glycated haemoglobin in the 1958 …


Using Economic Instruments To Develop Effective Management Of Invasive Species: Insights From A Bioeconomic Model, Shana M. Mcdermott, Rebecca E. Irwin, Brad W. Taylor Jul 2013

Using Economic Instruments To Develop Effective Management Of Invasive Species: Insights From A Bioeconomic Model, Shana M. Mcdermott, Rebecca E. Irwin, Brad W. Taylor

Dartmouth Scholarship

Economic growth is recognized as an important factor associated with species invasions. Consequently, there is increasing need to develop solutions that combine economics and ecology to inform invasive species management. We developed a model combining economic, ecological, and sociological factors to assess the degree to which economic policies can be used to control invasive plants. Because invasive plants often spread across numerous properties, we explored whether property owners should manage invaders cooperatively as a group by incorporating the negative effects of invader spread in management decisions (collective management) or independently, whereby the negative effects of invasive plant spread are ignored …


Mechanisms Of Signal Transduction By Ethylene: Overlapping And Non-Overlapping Signalling Roles In A Receptor Family, Samina N. Shakeel, Xiaomin Wang, Brad M. Binder, G. Eric Schaller Feb 2013

Mechanisms Of Signal Transduction By Ethylene: Overlapping And Non-Overlapping Signalling Roles In A Receptor Family, Samina N. Shakeel, Xiaomin Wang, Brad M. Binder, G. Eric Schaller

Dartmouth Scholarship

The plant hormone ethylene regulates growth and development as well as responses to biotic and abiotic stresses. Over the last few decades, key elements involved in ethylene signal transduction have been identified through genetic approaches, these elements defining a pathway that extends from initial ethylene perception at the endoplasmic reticulum to changes in transcriptional regulation within the nucleus. Here, we present our current understanding of ethylene signal transduction, focusing on recent developments that support a model with overlapping and non-overlapping roles for members of the ethylene receptor family. We consider the evidence supporting this model for sub-functionalization within the receptor …


Reconstruction Of Family-Level Phylogenetic Relationships Within Demospongiae (Porifera) Using Nuclear Encoded Housekeeping Genes, Malcolm S. Hill, April Hill, Jose Lopez, Kevin J. Peterson Jan 2013

Reconstruction Of Family-Level Phylogenetic Relationships Within Demospongiae (Porifera) Using Nuclear Encoded Housekeeping Genes, Malcolm S. Hill, April Hill, Jose Lopez, Kevin J. Peterson

Dartmouth Scholarship

Background: Demosponges are challenging for phylogenetic systematics because of their plastic and relatively simple morphologies and many deep divergences between major clades. To improve understanding of the phylogenetic relationships within Demospongiae, we sequenced and analyzed seven nuclear housekeeping genes involved in a variety of cellular functions from a diverse group of sponges.

Methodology/Principal Findings: We generated data from each of the four sponge classes (i.e., Calcarea, Demospongiae, Hexactinellida, and Homoscleromorpha), but focused on family-level relationships within demosponges. With data for 21 newly sampled families, our Maximum Likelihood and Bayesian-based approaches recovered previously phylogenetically defined taxa: Keratosap, Myxospongiaep, Spongillidap, Haploscleromorphap (the …


Arabidopsis Bhlh100 And Bhlh101 Control Iron Homeostasis Via A Fit-Independent Pathway, Alicia B. Sivitz, Victor Hermand, Catherine Curie, Grégory Vert Sep 2012

Arabidopsis Bhlh100 And Bhlh101 Control Iron Homeostasis Via A Fit-Independent Pathway, Alicia B. Sivitz, Victor Hermand, Catherine Curie, Grégory Vert

Dartmouth Scholarship

Iron deficiency induces a complex set of responses in plants, including developmental and physiological changes, to increase iron uptake from soil. In Arabidopsis, many transporters involved in the absorption and distribution of iron have been identified over the past decade. However, little is known about the signaling pathways and networks driving the various responses to low iron. Only the basic helix–loop–helix (bHLH) transcription factor FIT has been shown to control the expression of the root iron uptake machinery genes FRO2 and IRT1. Here, we characterize the biological role of two other iron-regulated transcription factors, bHLH100 and bHLH101, in iron homeostasis. …


Systems Approach Identifies An Organic Nitrogen-Responsive Gene Network That Is Regulated By The Master Clock Control Gene Cca1, Rodrigo A. Gutierrez, Trevor L. Stokes, Karen Thum, Xiaodong Xu, Mariana Obertello, Manpreet S. Katari, Milos Tanurdzic, Alexis Dean, Damion C. Nero, C Robertson Mcclung, Gloria M. Coruzzi Mar 2008

Systems Approach Identifies An Organic Nitrogen-Responsive Gene Network That Is Regulated By The Master Clock Control Gene Cca1, Rodrigo A. Gutierrez, Trevor L. Stokes, Karen Thum, Xiaodong Xu, Mariana Obertello, Manpreet S. Katari, Milos Tanurdzic, Alexis Dean, Damion C. Nero, C Robertson Mcclung, Gloria M. Coruzzi

Dartmouth Scholarship

Understanding how nutrients affect gene expression will help us to understand the mechanisms controlling plant growth and development as a function of nutrient availability. Nitrate has been shown to serve as a signal for the control of gene expression in Arabidopsis. There is also evidence, on a gene-by-gene basis, that downstream products of nitrogen (N) assimilation such as glutamate (Glu) or glutamine (Gln) might serve as signals of organic N status that in turn regulate gene expression. To identify genome-wide responses to such organic N signals, Arabidopsis seedlings were transiently treated with ammonium nitrate in the presence or absence of …


The Role Of Carcinine In Signaling At The Drosophila Photoreceptor Synapse, Brendan A. Gavin, Susan E. Arruda, Patrick J. Dolph Dec 2007

The Role Of Carcinine In Signaling At The Drosophila Photoreceptor Synapse, Brendan A. Gavin, Susan E. Arruda, Patrick J. Dolph

Dartmouth Scholarship

The Drosophila melanogaster photoreceptor cell has long served as a model system for researchers focusing on how animal sensory neurons receive information from their surroundings and translate this information into chemical and electrical messages. Electroretinograph (ERG) analysis of Drosophila mutants has helped to elucidate some of the genes involved in the visual transduction pathway downstream of the photoreceptor cell, and it is now clear that photoreceptor cell signaling is dependent upon the proper release and recycling of the neurotransmitter histamine. While the neurotransmitter transporters responsible for clearing histamine, and its metabolite carcinine, from the synaptic cleft have remained unknown, a …


Regulation Of Meiotic Cohesion And Chromosome Core Morphogenesis During Pachytene In Drosophila Oocytes, Radhika S. Khetani, Sharon E. Bickel Jul 2007

Regulation Of Meiotic Cohesion And Chromosome Core Morphogenesis During Pachytene In Drosophila Oocytes, Radhika S. Khetani, Sharon E. Bickel

Dartmouth Scholarship

During meiosis, cohesion between sister chromatids is required for normal levels of homologous recombination, maintenance of chiasmata and accurate chromosome segregation during both divisions. In Drosophila, null mutations in the ord gene abolish meiotic cohesion, although how ORD protein promotes cohesion has remained elusive. We show that SMC subunits of the cohesin complex colocalize with ORD at centromeres of ovarian germ-line cells. In addition, cohesin SMCs and ORD are visible along the length of meiotic chromosomes during pachytene and remain associated with chromosome cores following DNase I digestion. In flies lacking ORD activity, cohesin SMCs fail to accumulate at oocyte …


Integration Without Unification: An Argument For Pluralism In The Biological Sciences, Sandra D. Mitchell, Michael R. Dietrich Dec 2006

Integration Without Unification: An Argument For Pluralism In The Biological Sciences, Sandra D. Mitchell, Michael R. Dietrich

Dartmouth Scholarship

In this article, we consider the tension between unification and pluralism in biological theory. We begin with a consideration of historical efforts to establish a unified understanding of evolution in the neo‐Darwinian synthesis. The fragmentation of the evolutionary synthesis by molecular evolution suggests the limitations of the general unificationist ideal for biology but not necessarily for integrating explanations. In the second half of this article, we defend a specific variety of pluralism that allows for the integration required for explanations of complex phenomena without unification on a large scale.


The Relationship Between Frq-Protein Stability And Temperature Compensation In The Neurospora Circadian Clock, Peter Ruoff, Jennifer J. Loros, Jay C. Dunlap Dec 2005

The Relationship Between Frq-Protein Stability And Temperature Compensation In The Neurospora Circadian Clock, Peter Ruoff, Jennifer J. Loros, Jay C. Dunlap

Dartmouth Scholarship

Temperature compensation is an important property of all biological clocks. In Neurospora crassa, negative-feedback regulation on the frequency (frq) gene's transcription by the FRQ protein plays a central role in the organism's circadian pacemaker. Earlier model calculations predicted that the stability of FRQ should determine the period length of Neurospora's circadian rhythm as well as the rhythm's temperature compensation. Here, we report experimental FRQ protein stabilities in frq mutants at 20 degrees C and 25 degrees C, and estimates of overall activation energies for mutant FRQ protein degradation. The results are consistent with earlier model predictions, i.e., temperature compensation of …


Origin Of The Eumetazoa: Testing Ecological Predictions Of Molecular Clocks Against The Proterozoic Fossil Record, Kevin J. Peterson, Nicholas J. Butterfield Jul 2005

Origin Of The Eumetazoa: Testing Ecological Predictions Of Molecular Clocks Against The Proterozoic Fossil Record, Kevin J. Peterson, Nicholas J. Butterfield

Dartmouth Scholarship

Molecular clocks have the potential to shed light on the timing of early metazoan divergences, but differing algorithms and calibration points yield conspicuously discordant results. We argue here that competing molecular clock hypotheses should be testable in the fossil record, on the principle that fundamentally new grades of animal organization will have ecosystem-wide impacts. Using a set of seven nuclear-encoded protein sequences, we demonstrate the paraphyly of Porifera and calculate sponge/eumetazoan and cnidarian/bilaterian divergence times by using both distance [minimum evolution (ME)] and maximum likelihood (ML) molecular clocks; ME brackets the appearance of Eumetazoa between 634 and 604 Ma, whereas …