Open Access. Powered by Scholars. Published by Universities.®

Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Biology

Modelling Cholera In Periodic Environments, Drew Posny, Jin Wang Jan 2014

Modelling Cholera In Periodic Environments, Drew Posny, Jin Wang

Mathematics & Statistics Faculty Publications

We propose a deterministic compartmental model for cholera dynamics in periodic environments. The model incorporates seasonal variation into a general formulation for the incidence (or, force of infection) and the pathogen concentration. The basic reproduction number of the periodic model is derived, based on which a careful analysis is conducted on the epidemic and endemic dynamics of cholera. Several specific examples are presented to demonstrate this general model, and numerical simulation results are used to validate the analytical prediction.


A Generalized Cholera Model And Epidemic-Endemic Analysis, Jin Wang, Shu Liao Jan 2012

A Generalized Cholera Model And Epidemic-Endemic Analysis, Jin Wang, Shu Liao

Mathematics & Statistics Faculty Publications

The transmission of cholera involves both human-to-human and environment-to-human pathways that complicate its dynamics. In this paper, we present a new and unified deterministic model that incorporates a general incidence rate and a general formulation of the pathogen concentration to analyse the dynamics of cholera. Particularly, this work unifies many existing cholera models proposed by different authors. We conduct equilibrium analysis to carefully study the complex epidemic and endemic behaviour of the disease. Our results show that despite the incorporation of the environmental component, there exists a forward transcritical bifurcation at R0 = 1 for the combined human-environment epidemiological …


Analysis Of Biological Features Associated With Meiotic Recombination Hot And Cold Spots In Saccharomyces Cerevisiae, Loren Hansen, Nak-Kyeong Kim, Leonardo Mariño-Ramírez, David Landsman Jan 2011

Analysis Of Biological Features Associated With Meiotic Recombination Hot And Cold Spots In Saccharomyces Cerevisiae, Loren Hansen, Nak-Kyeong Kim, Leonardo Mariño-Ramírez, David Landsman

Mathematics & Statistics Faculty Publications

Meiotic recombination is not distributed uniformly throughout the genome. There are regions of high and low recombination rates called hot and cold spots, respectively. The recombination rate parallels the frequency of DNA double-strand breaks (DSBs) that initiate meiotic recombination. The aim is to identify biological features associated with DSB frequency. We constructed vectors representing various chromatin and sequence-based features for 1179 DSB hot spots and 1028 DSB cold spots. Using a feature selection approach, we have identified five features that distinguish hot from cold spots in Saccharomyces cerevisiae with high accuracy, namely the histone marks H3K4me3, H3K14ac, H3K36me3, and H3K79me3; …


Putting The X In Biology: A Review Of The Mathematics Of Life, John Adam Jan 2011

Putting The X In Biology: A Review Of The Mathematics Of Life, John Adam

Mathematics & Statistics Faculty Publications

(First Paragraph) Charles Darwin's 1859 work On the Origin of the Species contained no equations. But that does not mean mathematics has no role to play in the science of life; in fact, the field of biomathematics is burgeoning and has been for several decades. Ian Stewart's new book does an admirable job of unfolding the mathematics undergirding so much of the research being carried out today in the many fields that comprise the subject of biology. Stewart sets the context by noting five great revolutions that have changed the way scientists think about life. These five revolutions are: (i) …


Activator-Inhibitor Control Of Tissue Growth, John A. Adam Jan 1991

Activator-Inhibitor Control Of Tissue Growth, John A. Adam

Mathematics & Statistics Faculty Publications

This note develops a simple model for the competition between activator and inhibitor control mechanisms in one-dimensional tissue growth. The pedagogic usefulness of such a model is that it is easily accessible to undergraduate applied mathematicians and is suggestive of behavior known to occur in more realistic biological systems (e.g., some types of cancer). The limitations of the model are obvious and can provide a basis for discussion of the applicability of complementary levels of description in mathematical modeling.