Open Access. Powered by Scholars. Published by Universities.®

Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Biology

Developing A Novel Place Preference Assay To Compare Drosophila Species Over Time, Martha M. Brinson May 2022

Developing A Novel Place Preference Assay To Compare Drosophila Species Over Time, Martha M. Brinson

Honors Theses

Across phylogeny, integration of external factors, memory, and internal states of the organism dictate organismal behavior and mechanisms. The underlying genetic components can affect these behaviors such as in genomic changes arising from speciation. In this thesis, a new place preference assay was evaluated in the analysis and investigation of two species of Drosophila flies (D. melanogaster and D. simulans) to measure similarities and differences and their attraction to two different food substrates. Sleep and circadian measurements were also recorded during experimentation. The Drosophila Activity Monitor 5M (DAM5M) System and Sleep Circadian Analysis MATLAB Program (SCAMP) analysis were …


Functional Regionalization In The Fly Eye As An Adaptation To Habitat Structure, Carlos A. Ruiz Mar 2021

Functional Regionalization In The Fly Eye As An Adaptation To Habitat Structure, Carlos A. Ruiz

FIU Electronic Theses and Dissertations

With over 150,000 described species, flies constitute one of the most species-rich groups of animals on earth, and have managed to colonize almost every corner of it. Part of their success comes from their amazing flying skills, which are strongly tied to their visual capabilities. To navigate fast and accurately through their habitats, they must be able to process the inordinate amounts of visual information necessary to sort obstacles, avoid predators and remain on course. Surprisingly, despite their tiny brains, flies have no problem in processing all that information to generate correcting maneuvers in just about 30 ms. To this …


Drosophila Model To Study Muscle Atrophy, Aaron Aghai Aug 2020

Drosophila Model To Study Muscle Atrophy, Aaron Aghai

Master of Science in Integrative Biology Theses

Muscle atrophy (MA) is a phenomenon of muscle mass loss due to accelerated protein degradation in muscle fibers. Some pathological conditions, such as chronic inflammation or cancer, induce accelerated MA, which complicates medical treatment, hampers recovery of fragile patients, and ultimately can be the cause of a patient’s death. To gain better control over MA, more information is required about the whole spectrum of genetic factors that can influence MA.

Drosophila provides an excellent platform for genetic screening, although it has somewhat limited utility for MA research since insect muscles lack the level of plasticity found in mammalian muscles. We …


Determining The Genetic Control Of Neural Tube Malformation Through Genetic Interactions With Idgf3, Elli N. Fox May 2020

Determining The Genetic Control Of Neural Tube Malformation Through Genetic Interactions With Idgf3, Elli N. Fox

Honors Projects

Genetic mutations disrupting human neural tube formation can lead to birth defects such as spina bifida and anencephaly. Defects can result in lack of neural tube closure in either the caudal (spina bifida) or cranial (anencephaly) regions. Little is known about the genes that cause these malformations. Researchers have been using the model organism Drosophila melanogaster in an attempt to determine genes responsible for neural tube malformations. Recently, an ortholog of human chitin-like protein, imaginal disc growth factor 3 (Idgf3), has been identified as important in the proper formation of Drosophila egg dorsal appendages. However, the molecular mechanism responsible for …


The Effects Of A Ketone Body On Synaptic Transmission, Alexandra Elizabeth Stanback Jan 2019

The Effects Of A Ketone Body On Synaptic Transmission, Alexandra Elizabeth Stanback

Theses and Dissertations--Biology

The ketogenic diet is commonly used to control epilepsy, especially in cases when medications cannot. The diet typically consists of high fat, low carb, and adequate protein and produces a metabolite called acetoacetate. Seizure activity is characterized by glutamate excitotoxicity and therefore glutamate regulation is a point of research for control of these disorders. Acetoacetate is heavily implicated as the primary molecule responsible for decreasing glutamate in the synapse; it is believed that acetoacetate interferes with the transport of glutamate into the synaptic vesicles. The effects on synaptic transmission at glutamatergic synapses was studied in relation to the ketogenic diet …


Optogenetic Stimulation Of Drosophila Heart Rate At Different Temperatures And Ca2+ Concentrations, Yuechen Zhu, Henry Uradu, Zana R. Majeed, Robin L. Cooper Feb 2016

Optogenetic Stimulation Of Drosophila Heart Rate At Different Temperatures And Ca2+ Concentrations, Yuechen Zhu, Henry Uradu, Zana R. Majeed, Robin L. Cooper

Biology Faculty Publications

Optogenetics is a revolutionary technique that enables noninvasive activation of electrically excitable cells. In mammals, heart rate has traditionally been modulated with pharmacological agents or direct stimulation of cardiac tissue with electrodes. However, implanted wires have been known to cause physical damage and damage from electrical currents. Here, we describe a proof of concept to optically drive cardiac function in a model organism, Drosophila melanogaster. We expressed the light sensitive channelrhodopsin protein ChR2.XXL in larval Drosophila hearts and examined light‐induced activation of cardiac tissue. After demonstrating optical stimulation of larval heart rate, the approach was tested at low temperature …


Target Recognition And Competitive Synaptogenesis In The Drosophila Giant Fiber System, Jason Joseph Hill May 2012

Target Recognition And Competitive Synaptogenesis In The Drosophila Giant Fiber System, Jason Joseph Hill

Open Access Dissertations

The development of complex neural networks relies on a careful balance of environmental cues to guide and shape both ends of the eventual connection. However, the correct wiring of circuits whose components share molecular profiles depends on a more elaborate phenomenon, competition. Despite being highly studied, there is still a lack of understanding as to the mechanism that allows molecularly identical cells to form exclusive connections with their targets. To address this complex question, we turned to a simple circuit within the genetically tractable fly. Responsible for the escape reflex, the Giant Fiber System is comprised of bilaterally symmetrical axons …