Open Access. Powered by Scholars. Published by Universities.®

Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 17 of 17

Full-Text Articles in Biology

Elevational Variation In Body-Temperature Response To Immune Challenge In A Lizard, Francisco Javier Zamora-Camacho, Senda Reguera, Gregorio Moreno-Rueda Apr 2016

Elevational Variation In Body-Temperature Response To Immune Challenge In A Lizard, Francisco Javier Zamora-Camacho, Senda Reguera, Gregorio Moreno-Rueda

Dartmouth Scholarship

Immunocompetence benefits animal fitness by combating pathogens, but also entails some costs. One of its main components is fever, which in ectotherms involves two main types of costs: energy expenditure and predation risk. Whenever those costs of fever outweigh its benefits, ectotherms are expected not to develop fever, or even to show hypothermia, reducing costs of thermoregulation and diverting the energy saved to other components of the immune system. Environmental thermal quality, and therefore the thermoregulation cost/benefit balance, varies geographically. Hence, we hypothesize that, in alpine habitats, immune-challenged ectotherms should show no thermal response, given that (1) hypothermia would be …


Natural Selection On Thermal Performance In A Novel Thermal Environment, Michael L. Logan, Robert M. Cox, Ryan Calsbeek Sep 2014

Natural Selection On Thermal Performance In A Novel Thermal Environment, Michael L. Logan, Robert M. Cox, Ryan Calsbeek

Dartmouth Scholarship

Tropical ectotherms are thought to be especially vulnerable to climate change because they are adapted to relatively stable temperature regimes, such that even small increases in environmental temperature may lead to large decreases in physiological performance. One way in which tropical organisms may mitigate the detrimental effects of warming is through evolutionary change in thermal physiology. The speed and magnitude of this response depend, in part, on the strength of climate-driven selection. However, many ectotherms use behavioral adjustments to maintain preferred body temperatures in the face of environmental variation. These behaviors may shelter individuals from natural selection, preventing evolutionary adaptation …


Dirigent Domain-Containing Protein Is Part Of The Machinery Required For Formation Of The Lignin-Based Casparian Strip In The Root, Prashant S. Hosmani, Takehiro Kamiya, John Danku, Sadaf Naseer, Niko Geldner, Mary Lou Guerinot, David Salt Aug 2013

Dirigent Domain-Containing Protein Is Part Of The Machinery Required For Formation Of The Lignin-Based Casparian Strip In The Root, Prashant S. Hosmani, Takehiro Kamiya, John Danku, Sadaf Naseer, Niko Geldner, Mary Lou Guerinot, David Salt

Dartmouth Scholarship

The endodermis acts as a "second skin" in plant roots by providing the cellular control necessary for the selective entry of water and solutes into the vascular system. To enable such control, Casparian strips span the cell wall of adjacent endodermal cells to form a tight junction that blocks extracellular diffusion across the endodermis. This junction is composed of lignin that is polymerized by oxidative coupling of monolignols through the action of a NADPH oxidase and peroxidases. Casparian strip domain proteins (CASPs) correctly position this biosynthetic machinery by forming a protein scaffold in the plasma membrane at the site where …


Scfkmd Controls Cytokinin Signaling By Regulating The Degradation Of Type-B Response Regulators, Hyo Jung Kim, Yi-Hsuan Chiang, Joseph J. Kieber, G. Eric Schaller Jun 2013

Scfkmd Controls Cytokinin Signaling By Regulating The Degradation Of Type-B Response Regulators, Hyo Jung Kim, Yi-Hsuan Chiang, Joseph J. Kieber, G. Eric Schaller

Dartmouth Scholarship

Cytokinins are plant hormones that play critical roles in growth and development. In Arabidopsis, the transcriptional response to cytokinin is regulated by action of type-B Arabidopsis response regulators (ARRs). Although central elements in the cytokinin signal transduction pathway have been identified, mechanisms controlling output remain to be elucidated. Here we demonstrate that a family of F-box proteins, called the kiss me deadly (KMD) family, targets type-B ARR proteins for degradation. KMD proteins form an S-phase kinase-associated PROTEIN1 (SKP1)/Cullin/F-box protein (SCF) E3 ubiquitin ligase complex and directly interact with type-B ARR proteins. Loss-of-function KMD mutants stabilize type-B ARRs and exhibit an …


Minimum Cost Of Transport In Asian Elephants: Do We Really Need A Bigger Elephant?, V. A. Langman, M. F. Rowe, T. J. Roberts, N. V. Langman, C. R. Taylor Jan 2012

Minimum Cost Of Transport In Asian Elephants: Do We Really Need A Bigger Elephant?, V. A. Langman, M. F. Rowe, T. J. Roberts, N. V. Langman, C. R. Taylor

Dartmouth Scholarship

Body mass is the primary determinant of an animal’s energy requirements. At their optimum walking speed, large animals have lower mass-specific energy requirements for locomotion than small ones. In animals ranging in size from 0.8 g (roach) to 260 kg (zebu steer), the minimum cost of transport (COTmin) decreases with increasing body size roughly as COTmin∝body mass (Mb)–0.316±0.023 (95% CI). Typically, the variation of COTmin with body mass is weaker at the intraspecific level as a result of physiological and geometric similarity within closely related species. The interspecific relationship estimates that …


Type Ii Protein Arginine Methyltransferase 5 (Prmt5) Is Required For Circadian Pperiod Determination In Arabidopsis Thaliana, Sunghyun Hong, Hae-Ryoung Song, Kerry Lutz, Randall A. Kerstetter, Todd P. Michael, C. Robertson Mcclung Dec 2010

Type Ii Protein Arginine Methyltransferase 5 (Prmt5) Is Required For Circadian Pperiod Determination In Arabidopsis Thaliana, Sunghyun Hong, Hae-Ryoung Song, Kerry Lutz, Randall A. Kerstetter, Todd P. Michael, C. Robertson Mcclung

Dartmouth Scholarship

Posttranslational modification is an important element in circadian clock function from cyanobacteria through plants and mammals. For example, a number of key clock components are phosphorylated and thereby marked for subsequent ubiquitination and degradation. Through forward genetic analysis we demonstrate that protein arginine methyltransferase 5 (PRMT5; At4g31120) is a critical determinant of circadian period in Arabidopsis. PRMT5 is coregulated with a set of 1,253 genes that shows alterations in phase of expression in response to entrainment to thermocycles versus photocycles in constant temperature. PRMT5 encodes a type II protein arginine methyltransferase that catalyzes the symmetric dimethylation of arginine residues (Rsme2). …


Manipulating Testosterone To Assess Links Between Behavior, Morphology, And Performance In The Brown Anole Anolis Sagrei, Robert M. Cox, Derek S. Stenquist, Justin P. Henningsen, Ryan Calsbeek Aug 2009

Manipulating Testosterone To Assess Links Between Behavior, Morphology, And Performance In The Brown Anole Anolis Sagrei, Robert M. Cox, Derek S. Stenquist, Justin P. Henningsen, Ryan Calsbeek

Dartmouth Scholarship

Survival and reproductive success are determined by the complex interplay between behavior, physiology, morphology, and performance. When optimal trait combinations along these various phenotypic axes differ between sexes or across seasons, regulatory mechanisms such as sex steroids can often facilitate sex‐specific and/or seasonal trait expression. In this study, we used surgical castration and replacement of exogenous testosterone in adult male brown anoles (Anolis sagrei) to simultaneously examine the effects of testosterone on a suite of morphological (dewlap area, body size), physiological (immune function), behavioral (dewlap, head bob, and push‐up displays), and performance (stamina, sprint speed, bite force) traits. …


The Leaf Ionome As A Multivariable System To Detect A Plant's Physiological Status, Ivan R. Baxter, Olga Vitek, Brett Lahner, Balasubramaniam Muthukumar, Monica Borghi, Joe Morrissey, Mary Lou Guerinot, David E. Salt Aug 2008

The Leaf Ionome As A Multivariable System To Detect A Plant's Physiological Status, Ivan R. Baxter, Olga Vitek, Brett Lahner, Balasubramaniam Muthukumar, Monica Borghi, Joe Morrissey, Mary Lou Guerinot, David E. Salt

Dartmouth Scholarship

The contention that quantitative profiles of biomolecules contain information about the physiological state of the organism has motivated a variety of high-throughput molecular profiling experiments. However, unbiased discovery and validation of biomolecular signatures from these experiments remains a challenge. Here we show that the Arabidopsis thaliana (Arabidopsis) leaf ionome, or elemental composition, contains such signatures, and we establish statistical models that connect these multivariable signatures to defined physiological responses, such as iron (Fe) and phosphorus (P) homeostasis. Iron is essential for plant growth and development, but potentially toxic at elevated levels. Because of this, shoot Fe concentrations are …


Systems Approach Identifies An Organic Nitrogen-Responsive Gene Network That Is Regulated By The Master Clock Control Gene Cca1, Rodrigo A. Gutierrez, Trevor L. Stokes, Karen Thum, Xiaodong Xu, Mariana Obertello, Manpreet S. Katari, Milos Tanurdzic, Alexis Dean, Damion C. Nero, C Robertson Mcclung, Gloria M. Coruzzi Mar 2008

Systems Approach Identifies An Organic Nitrogen-Responsive Gene Network That Is Regulated By The Master Clock Control Gene Cca1, Rodrigo A. Gutierrez, Trevor L. Stokes, Karen Thum, Xiaodong Xu, Mariana Obertello, Manpreet S. Katari, Milos Tanurdzic, Alexis Dean, Damion C. Nero, C Robertson Mcclung, Gloria M. Coruzzi

Dartmouth Scholarship

Understanding how nutrients affect gene expression will help us to understand the mechanisms controlling plant growth and development as a function of nutrient availability. Nitrate has been shown to serve as a signal for the control of gene expression in Arabidopsis. There is also evidence, on a gene-by-gene basis, that downstream products of nitrogen (N) assimilation such as glutamate (Glu) or glutamine (Gln) might serve as signals of organic N status that in turn regulate gene expression. To identify genome-wide responses to such organic N signals, Arabidopsis seedlings were transiently treated with ammonium nitrate in the presence or absence of …


A Subset Of Arabidopsis Ap2 Transcription Factors Mediates Cytokinin Responses In Concert With A Two-Component Pathway, Aaron M. Rashotte, Michael G. Mason, Claire E. Hutchison, Fernando J. Ferreira, G. Eric Schaller, Joseph J. Kieber Jul 2006

A Subset Of Arabidopsis Ap2 Transcription Factors Mediates Cytokinin Responses In Concert With A Two-Component Pathway, Aaron M. Rashotte, Michael G. Mason, Claire E. Hutchison, Fernando J. Ferreira, G. Eric Schaller, Joseph J. Kieber

Dartmouth Scholarship

The plant hormone cytokinin regulates numerous growth and developmental processes. A signal transduction pathway for cytokinin has been elucidated that is similar to bacterial two-component phosphorelays. In Arabidopsis, this pathway is comprised of receptors that are similar to sensor histidine kinases, histidine-containing phosphotransfer proteins, and response regulators (ARRs). There are two classes of response regulators, the type-A ARRs, which act as negative regulators of cytokinin responses, and the type-B ARRs, which are transcription factors that play a positive role in mediating cytokinin-regulated gene expression. Here we show that several closely related members of the Arabidopsis AP2 gene family of …


Time Constraints Mediate Predator-Induced Plasticity In Immune Function, Condition, And Life History, Robby Stoks, Marjan De Block, Stefanie Slos, Wendy Van Doorslaer, Jens Rolff Apr 2006

Time Constraints Mediate Predator-Induced Plasticity In Immune Function, Condition, And Life History, Robby Stoks, Marjan De Block, Stefanie Slos, Wendy Van Doorslaer, Jens Rolff

Dartmouth Scholarship

The simultaneous presence of predators and a limited time for development imposes a conflict: accelerating growth under time constraints comes at the cost of higher predation risk mediated by increased foraging. The few studies that have addressed this trade-off have dealt only with life history traits such as age and size at maturity. Physiological traits have largely been ignored in studies assessing the impact of environmental stressors, and it is largely unknown whether they respond independently of life history traits. Here, we studied the simultaneous effects of time constraints, i.e., as imposed by seasonality, and predation risk on immune defense, …


The Relationship Between Frq-Protein Stability And Temperature Compensation In The Neurospora Circadian Clock, Peter Ruoff, Jennifer J. Loros, Jay C. Dunlap Dec 2005

The Relationship Between Frq-Protein Stability And Temperature Compensation In The Neurospora Circadian Clock, Peter Ruoff, Jennifer J. Loros, Jay C. Dunlap

Dartmouth Scholarship

Temperature compensation is an important property of all biological clocks. In Neurospora crassa, negative-feedback regulation on the frequency (frq) gene's transcription by the FRQ protein plays a central role in the organism's circadian pacemaker. Earlier model calculations predicted that the stability of FRQ should determine the period length of Neurospora's circadian rhythm as well as the rhythm's temperature compensation. Here, we report experimental FRQ protein stabilities in frq mutants at 20 degrees C and 25 degrees C, and estimates of overall activation energies for mutant FRQ protein degradation. The results are consistent with earlier model predictions, i.e., temperature compensation of …


From The Cover: Assignment Of An Essential Role For The Neurospora Frequency Gene In Circadian Entrainment To Temperature Cycles, Antonio M. Pregueiro, Nathan Price-Lloyd, Deborah Bell-Pedersen, Christian Heintzen, Jennifer J. Loros, Jay C. Dunlap Feb 2005

From The Cover: Assignment Of An Essential Role For The Neurospora Frequency Gene In Circadian Entrainment To Temperature Cycles, Antonio M. Pregueiro, Nathan Price-Lloyd, Deborah Bell-Pedersen, Christian Heintzen, Jennifer J. Loros, Jay C. Dunlap

Dartmouth Scholarship

Circadian systems include slave oscillators and central pacemakers, and the cores of eukaryotic circadian clocks described to date are composed of transcription and translation feedback loops (TTFLs). In the model system Neurospora, normal circadian rhythmicity requires a TTFL in which a White Collar complex (WCC) activates expression of the frequency (frq) gene, and the FRQ protein feeds back to attenuate that activation. To further test the centrality of this TTFL to the circadian mechanism in Neurospora, we used low-amplitude temperature cycles to compare WT and frq-null strains under conditions in which a banding rhythm was elicited. WT cultures were entrained …


Two Arabidopsis Circadian Oscillators Can Be Distinguished By Differential Temperature Sensitivity, Todd P. Michael, Patrice A. Salome, C. Robertson Mcclung Mar 2003

Two Arabidopsis Circadian Oscillators Can Be Distinguished By Differential Temperature Sensitivity, Todd P. Michael, Patrice A. Salome, C. Robertson Mcclung

Dartmouth Scholarship

Circadian rhythms are widespread in nature and reflect the activity of an endogenous biological clock. In metazoans, the circadian system includes a central circadian clock in the brain as well as distinct clocks in peripheral tissues such as the retina or liver. Similarly, plants have distinct clocks in different cell layers and tissues. Here, we show that two different circadian clocks, distinguishable by their sensitivity to environmental temperature signals, regulate the transcription of genes that are expressed in the Arabidopsis thaliana cotyledon. One oscillator, which regulates CAB2 expression, responds preferentially to light–dark versus temperature cycles and fails to respond to …


Asymmetry Of The Central Apparatus Defines The Location Of Active Microtubule Sliding In Chlamydomonas Flagella, Matthew J. Wargo, Elizabeth F. Smith Jan 2003

Asymmetry Of The Central Apparatus Defines The Location Of Active Microtubule Sliding In Chlamydomonas Flagella, Matthew J. Wargo, Elizabeth F. Smith

Dartmouth Scholarship

Regulation of ciliary and flagellar motility requires spatial control of dynein-driven microtubule sliding. However, the mechanism for regulating the location and symmetry of dynein activity is not understood. One hypothesis is that the asymmetrically organized central apparatus, through interactions with the radial spokes, transmits a signal to regulate dynein-driven microtubule sliding between subsets of doublet microtubules. Based on this model, we hypothesized that the orientation of the central apparatus defines positions of active microtubule sliding required to control bending in the axoneme. To test this, we induced microtubule sliding in axonemes isolated from wild-type and mutant Chlamydomonas cells, and then …


Direct Determination Of The Kinetics Of Oxygen Diffusion To The Photocytes Of A Bioluminescent Elaterid Larva, Measurement Of Gas- And Aqueous-Phase Diffusional Barriers And Modelling Of Oxygen Supply, G. S. Timmins, E. J. Bechara, H. M. Swartz Jul 2000

Direct Determination Of The Kinetics Of Oxygen Diffusion To The Photocytes Of A Bioluminescent Elaterid Larva, Measurement Of Gas- And Aqueous-Phase Diffusional Barriers And Modelling Of Oxygen Supply, G. S. Timmins, E. J. Bechara, H. M. Swartz

Dartmouth Scholarship

We describe the development and use of a direct kinetic technique to determine the time taken for oxygen to diffuse from the external environment into the light-producing cells (photocytes) in the prothorax of bioluminescent larvae of Pyrearinus termitilluminans. This was achieved by measuring the time course of the pseudoflash induced through sequential anoxia followed by normoxia. We have also determined the separate times taken for this oxygen diffusion in gaseous and tissue (predominantly aqueous) phases by using helium and nitrogen as the carrier gas. Of the total time taken for diffusion, that in the gas phase required 613+/-136 ms (mean …


Measurement Of Oxygen Partial Pressure, Its Control During Hypoxia And Hyperoxia, And Its Effect Upon Light Emission In A Bioluminescent Elaterid Larva, G. S. Timmins, C. A. A. Penatti, E. J. H. Bechara, H. M. Swartz Sep 1999

Measurement Of Oxygen Partial Pressure, Its Control During Hypoxia And Hyperoxia, And Its Effect Upon Light Emission In A Bioluminescent Elaterid Larva, G. S. Timmins, C. A. A. Penatti, E. J. H. Bechara, H. M. Swartz

Dartmouth Scholarship

This study investigates the respiratory physiology of bioluminescent larvae of Pyrearinus termitilluminans in relation to their tolerance to hypoxia and hyperoxia and to the supply of oxygen for bioluminescence. The partial pressure of oxygen (P(O2)) was measured within the bioluminescent prothorax by in vivo electron paramagnetic resonance (EPR) oximetry following acclimation of larvae to hypoxic, normoxic and hyperoxic (normobaric) atmospheres and during periods of bioluminescence (during normoxia). The P(O2) in the prothorax during exposure to an external P(O2) of 15.2, 160 and 760 mmHg was 10.3+/-2.6, 134+/-0.9 and 725+/-73 mmHg respectively (mean +/- s.d., N=5; 1 mmHg=0.1333 kPa). Oxygen supply …