Open Access. Powered by Scholars. Published by Universities.®

Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Biology

Metabolic Rescue Of “Glucose Addicted” Cancer Cells In Vitro, Paolo Vignali Mar 2013

Metabolic Rescue Of “Glucose Addicted” Cancer Cells In Vitro, Paolo Vignali

Pursuit - The Journal of Undergraduate Research at The University of Tennessee

Transformations in the glycolytic metabolism of neoplasms modulate their robust cellular division. This characteristic leads to an “addiction” to glucose for continued proliferation and viability. This study investigated whether glucose metabolites could rescue cellular viability in glucose-starvation conditions, a model of the inter-tumoral nutrient-deficient environment. Findings illustrated potential cellular viability rescue with pyruvate addition in glucose-deprived conditions, yet the same potential was not observed with lactic acid, a metabolite that exists at characteristically high concentrations within the intertumoral microenvironment. These results could implicate a predominance of certain metabolic pathways in nutrient-starved cells. Molecular transport capacities across plasma membranes are tied …


Stiffness And Modulus And Independent Controllers Of Breast Cancer Metastasis, Dannielle Ryman Jan 2013

Stiffness And Modulus And Independent Controllers Of Breast Cancer Metastasis, Dannielle Ryman

Masters Theses 1911 - February 2014

One out of eight women in the United States will develop breast cancer during their lifetime. Ninety percent of cancer related deaths are due to metastasis. Metastasis is the biological process where individual or aggregate cancerous cells break away from the primary tumor site and colonize distant, non-adjacent locations throughout the body. It is my objectives to study how mechanical, topographical and biochemical cues affect metastatic breast cancer metastasis at an early developmental stage. ECM components have previously been shown to affect cell motility via ligand-receptor interactions, and physical cues, such as matrix stiffness and protein density. The primary tumor …


Examining The Functional Role Of Dprl-1 In Drosophila Melanogaster, John Valenzuela Jan 2013

Examining The Functional Role Of Dprl-1 In Drosophila Melanogaster, John Valenzuela

Summer Research

The Phosphatase of Regenerating Liver (PRL) family of proteins control cell growth, motility and proliferation. They have been shown to elevate the levels of these functions, leading to an increase in cancer metastasis (“malignancy”), when they are overexpressed. The goal of this experiment is to knockout PRL gene expression to examine the general function of PRL proteins. Drosophila melanogaster have only one copy of the PRL gene (dPRL-1), as opposed to humans and other mammals, which have 3. Thus, using P-element imprecise excision to create mutant strains either fully lacking or with decreased function of the dPRL-1 protein, …


Defining The Mechanism Of Enhanced Cellular Invasion Induced By Mechanical Stimulation, Snehal Sunil Ozarkar Jan 2013

Defining The Mechanism Of Enhanced Cellular Invasion Induced By Mechanical Stimulation, Snehal Sunil Ozarkar

Wayne State University Theses

Metastasis is a multistep process driven by various biochemical and mechanical factors, which eventually leads to formation of secondary tumors. The tumor mass is surrounded by basement membrane (BM) and stroma made of various extracellular matrix (ECM) proteins. During metastasis tumor cells disseminate from the primary tumor, breach the BM, invade the stroma, travel through blood and lymph and colonize tissues distant from the primary tumor. Formation of secondary tumors by metastasis is a leading cause of death in cancer patients. Even though plenty of research has been focused on biochemical factors affecting metastasis, information on role of mechanical factors …