Open Access. Powered by Scholars. Published by Universities.®

Bioinformatics Commons

Open Access. Powered by Scholars. Published by Universities.®

Machine learning

Theses/Dissertations

Neuroscience and Neurobiology

Articles 1 - 2 of 2

Full-Text Articles in Bioinformatics

Understanding Huntington's Disease Using Machine Learning Approaches, Sonali Lokhande Dec 2017

Understanding Huntington's Disease Using Machine Learning Approaches, Sonali Lokhande

KGI Theses and Dissertations

Huntington’s disease (HD) is a debilitating neurodegenerative disorder with a complex pathophysiology. Despite extensive studies to study the disease, the sequence of events through which mutant Huntingtin (mHtt) protein executes its action still remains elusive. The phenotype of HD is an outcome of numerous processes initiated by the mHtt protein along with other proteins that act as either suppressors or enhancers of the effects of mHtt protein and PolyQ aggregates. Utilizing an integrative systems biology approach, I construct and analyze a Huntington’s disease integrome using human orthologs of protein interactors of wild type and mHtt protein. Analysis of this integrome …


Global Gene Expression Profiling Of Healthy Human Brain And Its Application In Studying Neurological Disorders, Simarjeet K. Negi Dec 2016

Global Gene Expression Profiling Of Healthy Human Brain And Its Application In Studying Neurological Disorders, Simarjeet K. Negi

Theses & Dissertations

The human brain is the most complex structure known to mankind and one of the greatest challenges in modern biology is to understand how it is built and organized. The power of the brain arises from its variety of cells and structures, and ultimately where and when different genes are switched on and off throughout the brain tissue. In other words, brain function depends on the precise regulation of gene expression in its sub-anatomical structures. But, our understanding of the complexity and dynamics of the transcriptome of the human brain is still incomplete. To fill in the need, we designed …