Open Access. Powered by Scholars. Published by Universities.®

Bioinformatics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 9 of 9

Full-Text Articles in Bioinformatics

Database Methods For Copy Number Variant Analysis Of One Hundred Disease Associated Genes In Human Congenital Heart Disease, Maureen E. Tuffnell Oct 2011

Database Methods For Copy Number Variant Analysis Of One Hundred Disease Associated Genes In Human Congenital Heart Disease, Maureen E. Tuffnell

Master's Theses (2009 -)

Human genetic variation occurs more commonly than was recognized after the completion of the Human Genome Sequencing Project in 2003. Submicroscopic human DNA analysis has revealed copy number variation (CNV) as the deletion or duplication of a genomic region potentially affecting gene dosage. Advanced genetic research now includes the study of CNVs in diseased subject groups compared to in house controls or online published datasets of control CNV data. Research labs choose from different bioinformatic algorithms to make the copy number calls. Solutions for further processing the copy number data into quantifiable form require collaboration with data analysts and include …


Evolving Hard Problems: Generating Human Genetics Datasets With A Complex Etiology, Daniel S Himmelstein, Casey S Greene, Jason H Moore Jul 2011

Evolving Hard Problems: Generating Human Genetics Datasets With A Complex Etiology, Daniel S Himmelstein, Casey S Greene, Jason H Moore

Dartmouth Scholarship

BackgroundA goal of human genetics is to discover genetic factors that influence individuals' susceptibility to common diseases. Most common diseases are thought to result from the joint failure of two or more interacting components instead of single component failures. This greatly complicates both the task of selecting informative genetic variants and the task of modeling interactions between them. We and others have previously developed algorithms to detect and model the relationships between these genetic factors and disease. Previously these methods have been evaluated with datasets simulated according to pre-defined genetic models.


Hivtoolbox, An Integrated Web Application For Investigating Hiv, David P. Sargeant, Sandeep Deverasetty, Yang Luo, Angel Villahoz Baleta, Stephanie Zobrist, Viraj Rathnayake, Jacqueline C. Russo, Jay Vyas, Mark A. Muesing, Martin Schiller May 2011

Hivtoolbox, An Integrated Web Application For Investigating Hiv, David P. Sargeant, Sandeep Deverasetty, Yang Luo, Angel Villahoz Baleta, Stephanie Zobrist, Viraj Rathnayake, Jacqueline C. Russo, Jay Vyas, Mark A. Muesing, Martin Schiller

Life Sciences Faculty Research

Many bioinformatic databases and applications focus on a limited domain of knowledge federating links to information in other databases. This segregated data structure likely limits our ability to investigate and understand complex biological systems. To facilitate research, therefore, we have built HIVToolbox, which integrates much of the knowledge about HIV proteins and allows virologists and structural biologists to access sequence, structure, and functional relationships in an intuitive web application. HIV-1 integrase protein was used as a case study to show the utility of this application. We show how data integration facilitates identification of new questions and hypotheses much more rapid …


Practical Approach To Bioinformatics, Nigel Yarlett, Melissa Grigione Apr 2011

Practical Approach To Bioinformatics, Nigel Yarlett, Melissa Grigione

Cornerstone 3 Reports : Interdisciplinary Informatics

No abstract provided.


Computational Genomic Signatures And Metagenomics, Ozkan U. Nalbantoglu Apr 2011

Computational Genomic Signatures And Metagenomics, Ozkan U. Nalbantoglu

Department of Electrical and Computer Engineering: Dissertations, Theses, and Student Research

Mathematical characterizations of biological sequences form one of the main elements of bioinformatics. In this work, a class of DNA sequence characterization, namely computational genomics signatures, which capture global features of these sequences is used to address emerging computational biology challenges. Because of the species specificity and pervasiveness of genome signatures, it is possible to use these signatures to characterize and identify a genome or a taxonomic unit using a short genome fragment from that source. However, the identification accuracy is generally poor when the sequence model and the sequence distance measure are not selected carefully. We show that the …


A Noise Reducing Sampling Approach For Uncovering Critical Properties In Large Scale Biological Networks, Karthik Duraisamy, Kathryn Dempsey Cooper, Hesham Ali, Sanjukta Bhowmick Jan 2011

A Noise Reducing Sampling Approach For Uncovering Critical Properties In Large Scale Biological Networks, Karthik Duraisamy, Kathryn Dempsey Cooper, Hesham Ali, Sanjukta Bhowmick

Interdisciplinary Informatics Faculty Proceedings & Presentations

A correlation network is a graph-based representation of relationships among genes or gene products, such as proteins. The advent of high-throughput bioinformatics has resulted in the generation of volumes of data that require sophisticated in silico models, such as the correlation network, for in-depth analysis. Each element in our network represents expression levels of multiple samples of one gene and an edge connecting two nodes reflects the correlation level between the two corresponding genes in the network according to the Pearson correlation coefficient. Biological networks made in this manner are generally found to adhere to a scale-free structural nature, that …


Parallel Progressive Multiple Sequence Alignment On Reconfigurable Meshes, Ken Nguyen, Yi Pan, Ge Nong Jan 2011

Parallel Progressive Multiple Sequence Alignment On Reconfigurable Meshes, Ken Nguyen, Yi Pan, Ge Nong

Computer Science Faculty Publications

Background: One of the most fundamental and challenging tasks in bio-informatics is to identify related sequences and their hidden biological significance. The most popular and proven best practice method to accomplish this task is aligning multiple sequences together. However, multiple sequence alignment is a computing extensive task. In addition, the advancement in DNA/RNA and Protein sequencing techniques has created a vast amount of sequences to be analyzed that exceeding the capability of traditional computing models. Therefore, an effective parallel multiple sequence alignment model capable of resolving these issues is in a great demand.

Results: We design O(1) run-time solutions …


Hemebind: A Novel Method For Heme Binding Residue Prediction By Combining Structural And Sequence Information, R. Liu, Jianjun Hu Jan 2011

Hemebind: A Novel Method For Heme Binding Residue Prediction By Combining Structural And Sequence Information, R. Liu, Jianjun Hu

Faculty Publications

Background

Accurate prediction of binding residues involved in the interactions between proteins and small ligands is one of the major challenges in structural bioinformatics. Heme is an essential and commonly used ligand that plays critical roles in electron transfer, catalysis, signal transduction and gene expression. Although much effort has been devoted to the development of various generic algorithms for ligand binding site prediction over the last decade, no algorithm has been specifically designed to complement experimental techniques for identification of heme binding residues. Consequently, an urgent need is to develop a computational method for recognizing these important residues.

Results

Here …


Computational Prediction Of Heme-Binding Residues By Exploiting Residue Interaction Network, R. Liu, Jianjun Hu Jan 2011

Computational Prediction Of Heme-Binding Residues By Exploiting Residue Interaction Network, R. Liu, Jianjun Hu

Faculty Publications

Computational identification of heme-binding residues is beneficial for predicting and designing novel heme proteins. Here we proposed a novel method for heme-binding residue prediction by exploiting topological properties of these residues in the residue interaction networks derived from three-dimensional structures. Comprehensive analysis showed that key residues located in heme-binding regions are generally associated with the nodes with higher degree, closeness and betweenness, but lower clustering coefficient in the network. HemeNet, a support vector machine (SVM) based predictor, was developed to identify heme-binding residues by combining topological features with existing sequence and structural features. The results showed that incorporation of network-based …