Open Access. Powered by Scholars. Published by Universities.®

Bioinformatics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Bioinformatics

Modeling Electrostatics In Molecular Biology And Its Relevance With Molecular Mechanisms Of Diseases, Mahesh Koirala Aug 2022

Modeling Electrostatics In Molecular Biology And Its Relevance With Molecular Mechanisms Of Diseases, Mahesh Koirala

All Dissertations

Electrostatics plays an essential role in molecular biology. Modeling electrostatics in molecular biology is complicated due to the water phase, mobile ions, and irregularly shaped inhomogeneous biological macromolecules. This dissertation presents the popular DelPhi package that solves PBE and delivers the electrostatic potential distribution of biomolecules. We used the newly developed DelPhiForce steered Molecular Dynamics (DFMD) approach to model the binding of barstar to barnase and demonstrated that the first-principles method could also model the binding. This dissertation also reflects the use of existing computational approaches to model the effects of Single Amino Acid Variations (SAVs) to reveal molecular mechanisms …


Unveiling Global Roles Of G-Quadruplexes And G4-22 In Human Genetics, Ruth Barros De Paula Aug 2021

Unveiling Global Roles Of G-Quadruplexes And G4-22 In Human Genetics, Ruth Barros De Paula

Dissertations & Theses (Open Access)

G-quadruplexes are non-B DNA structures formed by four or more runs of repeated guanines that confer unique features to living organism’s genomes. These sequences are enriched in regulatory regions, such as promoters and 5’ UTRs, and have distinct regulatory roles in both health and disease states. Even though previous studies showed the impact of G4 in gene expression, none of them summarized the location-specific effect of G4. Also, there is no broad understanding about the most common G4 repeat in the human genome, named here as G4-22, and how it links to the evolution of mammals and their biology. In …


Computational Analysis And Prediction Of Intrinsic Disorder And Intrinsic Disorder Functions In Proteins, Akila I. Katuwawala Jan 2021

Computational Analysis And Prediction Of Intrinsic Disorder And Intrinsic Disorder Functions In Proteins, Akila I. Katuwawala

Theses and Dissertations

COMPUTATIONAL ANALYSIS AND PREDICTION OF INTRINSIC DISORDER AND INTRINSIC DISORDER FUNCTIONS IN PROTEINS

By Akila Imesha Katuwawala

A dissertation submitted in partial fulfillment of the requirements for the degree of Engineering, Doctor of Philosophy with a concentration in Computer Science at Virginia Commonwealth University.

Virginia Commonwealth University, 2021

Director: Lukasz Kurgan, Professor, Department of Computer Science

Proteins, as a fundamental class of biomolecules, have been studied from various perspectives over the past two centuries. The traditional notion is that proteins require fixed and stable three-dimensional structures to carry out biological functions. However, there is mounting evidence regarding a “special” class …


Development Of Computational Tools To Target Microrna, Luo Song Dec 2020

Development Of Computational Tools To Target Microrna, Luo Song

Dissertations & Theses (Open Access)

MicroRNAs (a.k.a, miRNAs) play an important role in disease development. However, few of their structures have been determined and structure-based computational methods remain challenging in accurately predicting their interactions with small molecules. To address this issue, my thesis is to develop integrated approaches to screening for novel inhibitors by targeting specific structure motifs in miRNAs. The project starts with implementing a tool to find potential miRNA targets with desired motifs. I combined both sequence information of miRNAs and known RNA structure data from Protein Data Bank (PDB) to predict the miRNA structure and identify the motif to target, then I …


New Methods For Deep Learning Based Real-Valued Inter-Residue Distance Prediction, Jacob Barger Nov 2020

New Methods For Deep Learning Based Real-Valued Inter-Residue Distance Prediction, Jacob Barger

Theses

Background: Much of the recent success in protein structure prediction has been a result of accurate protein contact prediction--a binary classification problem. Dozens of methods, built from various types of machine learning and deep learning algorithms, have been published over the last two decades for predicting contacts. Recently, many groups, including Google DeepMind, have demonstrated that reformulating the problem as a multi-class classification problem is a more promising direction to pursue. As an alternative approach, we recently proposed real-valued distance predictions, formulating the problem as a regression problem. The nuances of protein 3D structures make this formulation appropriate, allowing predictions …


A Pipeline For Creation Of Genome-Scale Metabolic Reconstructions, Shaun W. Norris Jan 2016

A Pipeline For Creation Of Genome-Scale Metabolic Reconstructions, Shaun W. Norris

Theses and Dissertations

The decreasing costs of next generation sequencing technologies and the increasing speeds at which they work have lead to an abundance of 'omic datasets. The need for tools and methods to analyze, annotate, and model these datasets to better understand biological systems is growing. Here we present a novel software pipeline to reconstruct the metabolic model of an organism in silico starting from its genome sequence and a novel compilation of biological databases to better serve the generation of metabolic models. We validate these methods using five Gardnerella vaginalis strains and compare the gene annotation results to NCBI and the …


Comparative Genomics Of Microbial Chemoreceptor Sequence, Structure, And Function, Aaron Daniel Fleetwood Dec 2014

Comparative Genomics Of Microbial Chemoreceptor Sequence, Structure, And Function, Aaron Daniel Fleetwood

Doctoral Dissertations

Microbial chemotaxis receptors (chemoreceptors) are complex proteins that sense the external environment and signal for flagella-mediated motility, serving as the GPS of the cell. In order to sense a myriad of physicochemical signals and adapt to diverse environmental niches, sensory regions of chemoreceptors are frenetically duplicated, mutated, or lost. Conversely, the chemoreceptor signaling region is a highly conserved protein domain. Extreme conservation of this domain is necessary because it determines very specific helical secondary, tertiary, and quaternary structures of the protein while simultaneously choreographing a network of interactions with the adaptor protein CheW and the histidine kinase CheA. This dichotomous …