Open Access. Powered by Scholars. Published by Universities.®

Bioinformatics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Bioinformatics

Unveiling Global Roles Of G-Quadruplexes And G4-22 In Human Genetics, Ruth Barros De Paula Aug 2021

Unveiling Global Roles Of G-Quadruplexes And G4-22 In Human Genetics, Ruth Barros De Paula

Dissertations & Theses (Open Access)

G-quadruplexes are non-B DNA structures formed by four or more runs of repeated guanines that confer unique features to living organism’s genomes. These sequences are enriched in regulatory regions, such as promoters and 5’ UTRs, and have distinct regulatory roles in both health and disease states. Even though previous studies showed the impact of G4 in gene expression, none of them summarized the location-specific effect of G4. Also, there is no broad understanding about the most common G4 repeat in the human genome, named here as G4-22, and how it links to the evolution of mammals and their biology. In …


Investigation Of Proliferation Suppressors In Genetic Fitness Screens, Walter Frank Lenoir Iv Dec 2020

Investigation Of Proliferation Suppressors In Genetic Fitness Screens, Walter Frank Lenoir Iv

Dissertations & Theses (Open Access)

Innovation of CRISPR gene-editing technology has provided scientists genome manipulation tools that allowed rapid advancement of scientific capabilities and thus improved our ability to systematically study mammalian genetic functional profiles. Genome-wide CRISPR knockout screens conducted in collections of human cell lines can knock out genes at multiple loci, and have provided new insights into functional roles for independent genes. This method has launched massive efforts in looking across genetic backgrounds for context specific genetic vulnerabilities within cancer. Much of the research effort thus far has been spent on optimizing phenotype distinctions between essential, genes required for cell fitness, and non-essential, …


Computational Insights Into The Generation Of Chromosomal Copy Number Changes, Yihua Liu May 2018

Computational Insights Into The Generation Of Chromosomal Copy Number Changes, Yihua Liu

Dissertations & Theses (Open Access)

Deviations from a diploid configuration of the human genome, spanning single genes or entire chromosomes, can have wide-ranging impacts on the variation of human phenotypes, including Mendelian and complex forms of diseases. These chromosomal alterations — such as duplications, deletions or copy-neutral loss-of-heterozygosity — are thus important forms of genetic variation for phenotyping populations of individuals as well as populations of cells. Indeed, copy number variants (CNVs) serve as hallmarks of critical changes in the development of particular diseases such as cancer and thus may be used as biomarkers. These CNVs may be either inherited (transmitted by germ cells, originating …


Computational Identification Of Noncoding Driver Mutations Based On Impact On Rna Processing, Kevin Zhu Dec 2017

Computational Identification Of Noncoding Driver Mutations Based On Impact On Rna Processing, Kevin Zhu

Dissertations & Theses (Open Access)

Despite the prevalence of mutations in the noncoding regions of the DNA, their effects on cancer development remain largely uninvestigated. This is especially evident when compared to coding mutations, which have been relatively well-studied and, in certain cases, been identified as driver mutations for cancer. Recent studies, however, have identified noncoding mutations that frequently appear in certain types of cancer, which may be evidence that those mutations are important to cancer development. Nonetheless, the role of noncoding mutations in cancer remains unclear. A potential vector for understanding this mechanism is through observing the relation between noncoding mutations and functional RNA …


A Study On The Function Of 14-3-3sigma In Regulating Cancer Energy Metabolism, Liem M. Phan, Liem M. Phan Dec 2012

A Study On The Function Of 14-3-3sigma In Regulating Cancer Energy Metabolism, Liem M. Phan, Liem M. Phan

Dissertations & Theses (Open Access)

Metabolic reprogramming has been shown to be a major cancer hallmark providing tumor cells with significant advantages for survival, proliferation, growth, metastasis and resistance against anti-cancer therapies. Glycolysis, glutaminolysis and mitochondrial biogenesis are among the most essential cancer metabolic alterations because these pathways provide cancer cells with not only energy but also crucial metabolites to support large-scale biosynthesis, rapid proliferation and tumorigenesis. In this study, we find that 14-3-3σ suppresses all these three metabolic processes by promoting the degradation of their main driver, c-Myc. In fact, 14-3-3s significantly enhances c-Myc poly-ubiquitination and subsequent degradation, reduces c-Myc transcriptional activity, and down-regulates …