Open Access. Powered by Scholars. Published by Universities.®

Bioinformatics Commons

Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences

Series

2020

Antitoxins

Articles 1 - 1 of 1

Full-Text Articles in Bioinformatics

Mechanism Of Translation Inhibition By Type Ii Gnat Toxin Atat2, Stepan V Ovchinnikov, Dmitry Bikmetov, Alexei Livenskyi, Marina Serebryakova, Brendan Wilcox, Kyle Mangano, Dmitrii I Shiriaev, Ilya A Osterman, Petr V Sergiev, Sergei Borukhov, Nora Vazquez-Laslop, Alexander S Mankin, Konstantin Severinov, Svetlana Dubiley Sep 2020

Mechanism Of Translation Inhibition By Type Ii Gnat Toxin Atat2, Stepan V Ovchinnikov, Dmitry Bikmetov, Alexei Livenskyi, Marina Serebryakova, Brendan Wilcox, Kyle Mangano, Dmitrii I Shiriaev, Ilya A Osterman, Petr V Sergiev, Sergei Borukhov, Nora Vazquez-Laslop, Alexander S Mankin, Konstantin Severinov, Svetlana Dubiley

Rowan-Virtua School of Osteopathic Medicine Faculty Scholarship

Type II toxin-antitoxins systems are widespread in prokaryotic genomes. Typically, they comprise two proteins, a toxin, and an antitoxin, encoded by adjacent genes and forming a complex in which the enzymatic activity of the toxin is inhibited. Under stress conditions, the antitoxin is degraded liberating the active toxin. Though thousands of various toxin-antitoxins pairs have been predicted bioinformatically, only a handful has been thoroughly characterized. Here, we describe the AtaT2 toxin from a toxin-antitoxin system from Escherichia coli O157:H7. We show that AtaT2 is the first GNAT (Gcn5-related N-acetyltransferase) toxin that specifically targets charged glycyl tRNA. In vivo, the AtaT2 …