Open Access. Powered by Scholars. Published by Universities.®

Bioinformatics Commons

Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences

PDF

Biochemistry Publications

Machine learning

Publication Year

Articles 1 - 3 of 3

Full-Text Articles in Bioinformatics

Pathway‐Extended Gene Expression Signatures Integrate Novel Biomarkers That Improve Predictions Of Patient Responses To Kinase Inhibitors, Ashis Bagchee‐Clark, Eliseos J. Mucaki, Tyson Whitehead, Peter Rogan Dec 2020

Pathway‐Extended Gene Expression Signatures Integrate Novel Biomarkers That Improve Predictions Of Patient Responses To Kinase Inhibitors, Ashis Bagchee‐Clark, Eliseos J. Mucaki, Tyson Whitehead, Peter Rogan

Biochemistry Publications

Cancer chemotherapy responses have been related to multiple pharmacogenetic biomarkers, often for the same drug. This study utilizes machine learning to derive multi‐gene expression signatures that predict individual patient responses to specific tyrosine kinase inhibitors, including erlotinib, gefitinib, sorafenib, sunitinib, lapatinib and imatinib. Support vector machine (SVM) learning was used to train mathematical models that distinguished sensitivity from resistance to these drugs using a novel systems biology‐based approach. This began with expression of genes previously implicated in specific drug responses, then expanded to evaluate genes whose products were related through biochemical pathways and interactions. Optimal pathway‐extended SVMs predicted responses in …


Pathway-Extended Gene Expression Signatures Integrate Novel Biomarkers That Improve Predictions Of Patient Responses To Kinase Inhibitors, Ashis Jem Bagchee-Clark, Eliseos J. Mucaki, Tyson Whitehead, Peter Rogan Nov 2020

Pathway-Extended Gene Expression Signatures Integrate Novel Biomarkers That Improve Predictions Of Patient Responses To Kinase Inhibitors, Ashis Jem Bagchee-Clark, Eliseos J. Mucaki, Tyson Whitehead, Peter Rogan

Biochemistry Publications

No abstract provided.


Accurate Cytogenetic Biodosimetry Through Automated Dicentric Chromosome Curation And Metaphase Cell Selection, Jin Liu, Yanxin Li, Ruth Wilkins, Canadian Nuclear Laboratories, Joan H. Knoll, Peter Rogan Aug 2017

Accurate Cytogenetic Biodosimetry Through Automated Dicentric Chromosome Curation And Metaphase Cell Selection, Jin Liu, Yanxin Li, Ruth Wilkins, Canadian Nuclear Laboratories, Joan H. Knoll, Peter Rogan

Biochemistry Publications

Accurate digital image analysis of abnormal microscopic structures relies on high quality images and on minimizing the rates of false positive (FP) and negative objects in images. Cytogenetic biodosimetry detects dicentric chromosomes (DCs) that arise from exposure to ionizing radiation, and determines radiation dose received based on DC frequency. Improvements in automated DC recognition increase the accuracy of dose estimates by reclassifying FP DCs as monocentric chromosomes or chromosome fragments. We also present image segmentation methods to rank high quality digital metaphase images and eliminate suboptimal metaphase cells. A set of chromosome morphology segmentation methods selectively filtered out FP DCs …