Open Access. Powered by Scholars. Published by Universities.®

Biodiversity Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Biodiversity

Detection, Diversity, And Evolution Of Fungal Nitric Oxide Reductases (P450nor), Steven Adam Higgins Aug 2017

Detection, Diversity, And Evolution Of Fungal Nitric Oxide Reductases (P450nor), Steven Adam Higgins

Doctoral Dissertations

Nitrous oxide (N2O) is a gas responsible for significant ozone layer depletion and contributes to greenhouse effects in Earth’s atmosphere. N2O is primarily generated by denitrification, whereby nitrate (NO3-) or nitrite (NO2-) is converted to gaseous N2O or N2. Teragram quantities of N2O are emitted annually from agricultural soils treated with nitrogenous fertilizers due to the activity of soil microbiota. Although bacteria and fungi harbor genes permitting denitrification, fungi lack NosZ, an enzyme responsible for reducing N2O into inert N2 gas. Historically, scientists have linked fungi …


Systematics, Diversification, And Functional Diversity Of Russulaceae (Russulales), Brian Patrick Looney May 2017

Systematics, Diversification, And Functional Diversity Of Russulaceae (Russulales), Brian Patrick Looney

Doctoral Dissertations

The family Russulaceae is an iconic family of mushroom-forming Basidiomycetes both because of their importance as edible mushrooms in many parts of the world and their species richness in both temperate and tropical forested biomes. While much mycological research has been focused on this group, recent systematic and ecological research has failed to develop a comprehensive or cohesive organization by which to understand the evolutionary relationships, patterns of diversification, or functional importance of the group. Recently, interest in ectomycorrhizal fungi (EmF), of which Russulaceae is a key lineage, has greatly increased due to the recognition of the importance of EmF …


Using Phylogenetic Comparative Methods To Understand Diversification And Geographic Range Evolution, Kathryn Aurora Massana May 2017

Using Phylogenetic Comparative Methods To Understand Diversification And Geographic Range Evolution, Kathryn Aurora Massana

Doctoral Dissertations

Two key processes that have been modeled in a phylogenetic comparative framework are diversification and historical biogeography. Many questions arise on what process have shaped the abundance (or lack) of species we see today and what influences their survival and interconnectedness with other species. Many methods have been developed to answer these questions. Over the past several decades there has been a rise in parametric modeling and development of more adequate frameworks to answer biological questions of interest. However, many models still lack the incorporation of ecological, mainly biotic factors, which influence the evolution and ecology of species, while accounting …