Open Access. Powered by Scholars. Published by Universities.®

Heme

Nucleic Acids, Nucleotides, and Nucleosides

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Other Biochemistry, Biophysics, and Structural Biology

Effect Of Hydrogen Peroxide On The Biosynthesis Of Heme And Proteins: Potential Implications For The Partitioning Of Glu-TrnaGlu Between These Pathways, Carolina Farah, Gloria Levicán, Michael Ibba, Omar Orellana Dec 2014

Effect Of Hydrogen Peroxide On The Biosynthesis Of Heme And Proteins: Potential Implications For The Partitioning Of Glu-TrnaGlu Between These Pathways, Carolina Farah, Gloria Levicán, Michael Ibba, Omar Orellana

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Glutamyl-tRNA (Glu-tRNAGlu) is the common substrate for both protein translation and heme biosynthesis via the C5 pathway. Under normal conditions, an adequate supply of this aminoacyl-tRNA is available to both pathways. However, under certain circumstances, Glu-tRNAGlu can become scarce, resulting in competition between the two pathways for this aminoacyl-tRNA. In Acidithiobacillus ferrooxidans, glutamyl-tRNA synthetase 1 (GluRS1) is the main enzyme that synthesizes Glu-tRNAGlu. Previous studies have shown that GluRS1 is inactivated in vitro by hydrogen peroxide (H2O2). This raises the question as to whether H2O2 negatively affects …


Redox Status Affects The Catalytic Activity Of Glutamyl-Trna Synthetase, Assaf Katz, Ranat Banerjee, Merly De Armas, Michael Ibba, Omar Orellana Jun 2010

Redox Status Affects The Catalytic Activity Of Glutamyl-Trna Synthetase, Assaf Katz, Ranat Banerjee, Merly De Armas, Michael Ibba, Omar Orellana

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Glutamyl-tRNA synthetases (GluRS) provide Glu-tRNA for different processes including protein synthesis, glutamine transamidation and tetrapyrrole biosynthesis. Many organisms contain multiple GluRSs, but whether these duplications solely broaden tRNA specificity or also play additional roles in tetrapyrrole biosynthesis is not known. Previous studies have shown that GluRS1, one of two GluRSs from the extremophile Acidithiobacillus ferrooxidans, is inactivated when intracellular heme is elevated suggesting a specific role for GluRS1 in the regulation of tetrapyrrole biosynthesis. We now show that, in vitro, GluRS1 activity is reversibly inactivated upon oxidation by hemin and hydrogen peroxide. The targets for oxidation-based inhibition were …