Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Other Biochemistry, Biophysics, and Structural Biology

Modification Of The In Vitro Uptake Mechanism And Anti-Oxidant Levels In Hacat Cells And Resultant Changes To Toxicity And Oxidative Stress Of G4 And G6 Poly (Amido Amine) Dendrimer Nanoparticles., Marcus Maher, Hugh Byrne Jun 2016

Modification Of The In Vitro Uptake Mechanism And Anti-Oxidant Levels In Hacat Cells And Resultant Changes To Toxicity And Oxidative Stress Of G4 And G6 Poly (Amido Amine) Dendrimer Nanoparticles., Marcus Maher, Hugh Byrne

Articles

The mechanism of cellular uptake by endocytosis and subsequent oxidative stress has been identified as the paradigm for the toxic response of cationically surface charged nanoparticles. In an attempt to circumvent the process, the effect of increased cellular membrane permeability on the uptake mechanisms of poly (amidoamine) dendrimers generation 4 (G4) and 6 (G6) in vitro was investigated. Immortalised, non-cancerous human keratinocyte (HaCaT) cells were treated with DL-Buthionine-(S,R)-sulfoximine (BSO). Active uptake of the particles was monitored using fluorescence microscopy to identify and quantify endosomal activity and resultant oxidative stress, manifest as increased levels of reactive oxygen species, monitored using the …


Evidence For Pipecolate Oxidase In Mediating Protection Against Hydrogen Peroxide Stress, Sathish Kumar Natarajan, Ezhumalai Muthukrishnan, Oleh Khalimonchuk, Justin L. Mott, Donald F. Becker Jan 2016

Evidence For Pipecolate Oxidase In Mediating Protection Against Hydrogen Peroxide Stress, Sathish Kumar Natarajan, Ezhumalai Muthukrishnan, Oleh Khalimonchuk, Justin L. Mott, Donald F. Becker

Department of Biochemistry: Faculty Publications

Pipecolate, an intermediate of the lysine catabolic pathway, is oxidized to Δ1-piperideine-6-carboxylate (P6C) by the flavoenzyme lpipecolate oxidase (PIPOX). P6C spontaneously hydrolyzes to generate α-aminoadipate semialdehyde, which is then converted into α-aminoadipate acid by α-aminoadipatesemialdehyde dehydrogenase. l-pipecolate was previously reported to protect mammalian cells against oxidative stress. Here, we examined whether PIPOX is involved in the mechanism of pipecolate stress protection. Knockdown of PIPOX by small interference RNA abolished pipecolate protection against hydrogen peroxide-induced cell death in HEK293 cells suggesting a critical role for PIPOX. Subcellular fractionation analysis showed that PIPOX is localized in the mitochondria of HEK293 …