Open Access. Powered by Scholars. Published by Universities.®

Chapman University

Quality control

Publication Year

Articles 1 - 3 of 3

Full-Text Articles in Other Biochemistry, Biophysics, and Structural Biology

Multiple Quality Control Pathways Limit Non-Protein Amino Acid Use By Yeast Cytoplasmic Phenylalanyl-Trna Synthetase, Adil Moghal, Lin Hwang, Kym F. Faull, Michael Ibba May 2016

Multiple Quality Control Pathways Limit Non-Protein Amino Acid Use By Yeast Cytoplasmic Phenylalanyl-Trna Synthetase, Adil Moghal, Lin Hwang, Kym F. Faull, Michael Ibba

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Non-protein amino acids, particularly isomers of the proteinogenic amino acids, present a threat to proteome integrity if they are mistakenly inserted into proteins. Quality control during aminoacyl-tRNA synthesis reduces non-protein amino acid incorporation by both substrate discrimination and proofreading. For example phenylalanyl-tRNA synthetase (PheRS) proofreads the non-protein hydroxylated phenylalanine derivative m-Tyr after its attachment to tRNAPhe. We now show in Saccharomyces cerevisiae that PheRS misacylation of tRNAPhe with the more abundant Phe oxidation product o-Tyr is limited by kinetic discrimination against o-Tyr-AMP in the transfer step followed by o-Tyr-AMP release from the synthetic …


Mistranslation Of The Genetic Code, Adil Moghal, Kyle Mohler, Michael Ibba Sep 2014

Mistranslation Of The Genetic Code, Adil Moghal, Kyle Mohler, Michael Ibba

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

During mRNA decoding at the ribosome, deviations from stringent codon identity, or “mistranslation,” are generally deleterious and infrequent. Observations of organisms that decode some codons ambiguously, and the discovery of a compensatory increase in mistranslation frequency to combat environmental stress have changed the way we view “errors” in decoding. Modern tools for the study of the frequency and phenotypic effects of mistranslation can provide quantitative and sensitive measurements of decoding errors that were previously inaccessible. Mistranslation with non‐protein amino acids, in particular, is an enticing prospect for new drug therapies and the study of molecular evolution.


Phenylalanyl-Trna Synthetase Editing Defects Result In Efficient Mistranslation Of Phenylalanine Codons As Tyrosine, Jiqiang Ling, Srujana S. Yadavalli, Michael Ibba Sep 2007

Phenylalanyl-Trna Synthetase Editing Defects Result In Efficient Mistranslation Of Phenylalanine Codons As Tyrosine, Jiqiang Ling, Srujana S. Yadavalli, Michael Ibba

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Translational quality control is monitored at several steps, including substrate selection by aminoacyl-tRNA synthetases (aaRSs), and discrimination of aminoacyl-tRNAs by elongation factor Tu (EF-Tu) and the ribosome. Phenylalanyl-tRNA synthetase (PheRS) misactivates Tyr but is able to correct the mistake using a proofreading activity named editing. Previously we found that overproduction of editing-defective PheRS resulted in Tyr incorporation at Phe-encoded positions in vivo , although the misreading efficiency could not be estimated. This raised the question as to whether or not EF-Tu and the ribosome provide further proofreading mechanisms to prevent mistranslation of Phe codons by Tyr. Here we show that, …